DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
TABLE OF CONTENTS

DIVISION 2 - EXISTING CONDITIONS

SECTION

| 024118 | SELECTIVE DEMOLITION AND ALTERATION WORK |

DIVISION 21 - FIRE SUPPRESSION

210517	SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
210523	GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING
210529	HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT
210553	IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
211119	FIRE DEPARTMENT CONNECTIONS
211313	WET PIPE SPRINKLER SYSTEMS
211316	DRY-PIPE SPRINKLER SYSTEMS

DIVISION 22 - PLUMBING

220517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220518	ESCUTCHEONS FOR PLUMBING PIPING
220519	METERS AND GAGES FOR PLUMBING PIPING
220523.10	GENERAL-DUTY VALVES FOR PLUMBING PIPING
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220719	PLUMBING PIPING INSULATION
221113	FACILITY WATER DISTRIBUTION PIPING
221116	DOMESTIC WATER PIPING
221119	DOMESTIC WATER PIPING SPECIALTIES
221316	SANITARY WASTE AND VENT PIPING
221319	SANITARY WASTE PIPING SPECIALTIES

DIVISION 26 - ELECTRICAL

260500	COMMON WORK RESULTS FOR ELECTRICAL
260519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLEING
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
262726	WIRING DEVICES

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
DIVISION 27 – COMMUNICATIONS

270000 COMMUNICATIONS
270526 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
270528 PATHWAYS FOR COMMUNICATIONS SYSTEMS
271100 COMMUNICATIONS EQUIPMENT ROOM FITTINGS
271500 COMMUNICATIONS HORIZONTAL CABLING

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

283111 DIGITAL ADDRESSABLE FIRE ALARM SYSTEM
SECTION 024118

SELECTIVE DEMOLITION AND ALTERATION WORK

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS
 A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES
 A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:
 1. Alteration and removal work as noted on drawings and as required to complete construction.
 2. Patching and refinishing of existing surfaces damaged as a result of this work.
 3. Protection.

1.3 RELATED SECTIONS
 A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS
 A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING
 A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner's approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner's property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.
F. Provide adequate fire protection in accordance with local fire department requirements.

G. Do not close or obstruct walkways, passageways, or stairways without the authorization of the Architect. Do not store or place materials in passageways, stairs, or other means of egress. Conduct operations with minimum traffic interference.

H. Be responsible for any damage to the existing structure or contents by reason of the insufficiency of protection provided.

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:

1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.

2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor's workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
Table of Contents

Division 2 - Existing Conditions

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>024118</td>
<td>Selective Demolition and Alteration Work</td>
</tr>
</tbody>
</table>

Division 21 - Fire Suppression

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210517</td>
<td>Sleeves and Sleeve Seals for Fire-Suppression Piping</td>
</tr>
<tr>
<td>210523</td>
<td>General-Duty Valves for Fire Protection Piping</td>
</tr>
<tr>
<td>210529</td>
<td>Hangers and Supports for Fire Suppression Piping and Equipment</td>
</tr>
<tr>
<td>210553</td>
<td>Identification for Fire-Suppression Piping and Equipment</td>
</tr>
<tr>
<td>211119</td>
<td>Fire Department Connections</td>
</tr>
<tr>
<td>211313</td>
<td>Wet Pipe Sprinkler Systems</td>
</tr>
<tr>
<td>211316</td>
<td>Dry-Pipe Sprinkler Systems</td>
</tr>
</tbody>
</table>

Division 22 - Plumbing

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220517</td>
<td>Sleeves and Sleeve Seals for Plumbing Piping</td>
</tr>
<tr>
<td>220518</td>
<td>Escutcheons for Plumbing Piping</td>
</tr>
<tr>
<td>220519</td>
<td>Meters and Gages for Plumbing Piping</td>
</tr>
<tr>
<td>220523.10</td>
<td>General-Duty Valves for Plumbing Piping</td>
</tr>
<tr>
<td>220529</td>
<td>Hangers and Supports for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>220553</td>
<td>Identification for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>220719</td>
<td>Plumbing Piping Insulation</td>
</tr>
<tr>
<td>221113</td>
<td>Facility Water Distribution Piping</td>
</tr>
<tr>
<td>221116</td>
<td>Domestic Water Piping</td>
</tr>
<tr>
<td>221119</td>
<td>Domestic Water Piping Specialties</td>
</tr>
<tr>
<td>221316</td>
<td>Sanitary Waste and Vent Piping</td>
</tr>
<tr>
<td>221319</td>
<td>Sanitary Waste Piping Specialties</td>
</tr>
</tbody>
</table>

Division 26 - Electrical

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
</tbody>
</table>

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
DIVISION 27 – COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270000</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>270526</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>270528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>271100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>271500</td>
<td>COMMUNICATIONS HORIZONTAL CABLING</td>
</tr>
</tbody>
</table>

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>DIGITAL ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 GENERAL REQUIREMENTS
 A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES
 A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:
 1. Alteration and removal work as noted on drawings and as required to complete construction.
 2. Patching and refinishing of existing surfaces damaged as a result of this work.
 3. Protection.

1.3 RELATED SECTIONS
 A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS
 A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING
 A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner's approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner's property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
F. Provide adequate fire protection in accordance with local fire department requirements.

G. Do not close or obstruct walkways, passageways, or stairways without the authorization of the Architect. Do not store or place materials in passageways, stairs, or other means of egress. Conduct operations with minimum traffic interference.

H. Be responsible for any damage to the existing structure or contents by reason of the insufficiency of protection provided.

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:
 1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.
 2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor's workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
DIVISION 21

FIRE PROTECTION
SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
4. Concrete Slabs above Grade:
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves Stack-sleeve fittings.

5. Interior Partitions:
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 210517
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Two-piece ball valves with indicators.
2. Bronze butterfly valves with indicators.
3. Iron butterfly valves with indicators.
4. Check valves.
5. Bronze OS&Y gate valves.
7. NRS gate valves.
8. Indicator posts.
9. Trim and drain valves.

1.3 DEFINITIONS

A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
B. NRS: Nonrising stem.
C. OS&Y: Outside screw and yoke.
D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and weld ends.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

 1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HCBZ - Indicator Posts, Gate Valve.
 b. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VQGU - Valves, Trim and Drain.

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:

 1. Automated Sprinkler Systems:
 a. Indicator posts.
 b. Valves.
 1) Gate valves.
 2) Check valves.
 a) Single check valves.
 3) Miscellaneous valves.

C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

D. ASME Compliance:

 1. ASME B16.1 for flanges on iron valves.
2. ASME B1.20.1 for threads for threaded-end valves.
3. ASME B31.9 for building services piping valves.

E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

F. NFPA Compliance: Comply with NFPA 24 for valves.

G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.

H. Valve Sizes: Same as upstream piping unless otherwise indicated.

I. Valve Actuator Types:
 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 2. Handwheel: For other than quarter-turn trim and drain valves.
 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 TWO-PIECE BALL VALVES WITH INDICATORS

A. Description:
 1. UL 1091, except with ball instead of disc and FM Global standard for indicating valves (butterfly or ball type), Class Number 1112.
 4. Body Material: Forged brass or bronze.
 5. Port Size: Full or standard.
 6. Seats: PTFE.
 7. Stem: Bronze or stainless steel.
 8. Ball: Chrome-plated brass.
 9. Actuator: Worm gear or traveling nut.
 10. Supervisory Switch: Internal or external.
 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.

2.3 BRONZE BUTTERFLY VALVES WITH INDICATORS

A. Description:
 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
 4. Seat Material: EPDM.
 5. Stem Material: Bronze or stainless steel.
 6. Disc: Bronze with EPDM coating.
 7. Actuator: Worm gear or traveling nut.
 8. Supervisory Switch: Internal or external.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

A. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
4. Seat Material: EPDM.
5. Stem: Stainless steel.
6. Disc: Ductile iron, nickel plated and EPDM or SBR coated.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.5 CHECK VALVES

A. Description:

3. Type: Single swing check.
4. Body Material: Cast iron, ductile iron, or bronze.
5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
6. Clapper Seat: Brass, bronze, or stainless steel.
7. Hinge Shaft: Bronze or stainless steel.

2.6 BRONZE OS&Y GATE VALVES

A. Description:

3. Body and Bonnet Material: Bronze or brass.
4. Wedge: One-piece bronze or brass.
5. Wedge Seat: Bronze.
6. Stem: Bronze or brass.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.7 NRS GATE VALVES

A. Description:
3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.8 INDICATOR POSTS

A. Description:

2. Base Barrel Material: Cast or ductile iron.
3. Extension Barrel: Cast or ductile iron.
4. Cap: Cast or ductile iron.

2.9 TRIM AND DRAIN VALVES

A. Ball Valves:

1. Description:

 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:

1. Section 221113 "Facility Water-distribution Piping" for application of valves in fire-suppression water-service piping outside the building.
2. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.
3. Section 211316 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 210523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Fastener systems.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 210516 "Expansion Fittings and Loops for Fire-Suppression Piping" for pipe guides and anchors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, test water and a safety factor load of 200 pounds.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 2. Galvanized Metallic Coatings: Pregalvanized or hot-dip galvanized.

B. Copper Pipe and Tube Hangers:
 1. Description: Copper-coated-steel, factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 2. Standard: Comply with MFMA-4, factory-fabricated components for field assembly.
 3. Channels: Continuous slotted carbon-steel channel with inturned lips.
 4. Channel Width: Selected for applicable load criteria.
 5. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.5 EQUIPMENT SUPPORTS

A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.6 MATERIALS

A. Carbon Steel: ASTM A1011/A1011M.

B. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.

C. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal strut systems.

D. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.
2. Install lag bolts in wood. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal are specified in Section 099113 "Exterior Painting." Section 099123 "Interior Painting." Section 099600 "High-Performance Coatings."

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated, stationary pipes NPS 1 to NPS 3.
 2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 2 to NPS 4 if little or no insulation is required.
 3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1 to NPS 2.
 4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3 to NPS 8.
 5. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 6, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 6. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 6 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 2 to NPS 4.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Comply with NFPA requirements.

J. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. C-Clamps (MSS Type 23): For structural shapes.
3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

K. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

L. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 210529
SECTON 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification
 material and device.
C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed
 content for each label.
D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032 inch thick, with predrilled holes for attachment
 hardware.
 2. Letter Color: Black.
 4. Minimum Label Size: Length and width vary for required label content, but not less than
 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
IDENTIFICATION FOR FIRE SUPPRESSION PIPING AND EQUIPMENT
Section 210553 – Page 3
DCA Permit Set 08-15-2018

C. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Lettering Size: Size letters according to ASME A13.1 for piping.

D. Pipe-Label Colors:

 1. Background Color: Safety Red.

2.4 VALVE TAGS

A. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.

 1. Tag Material: Brass, 0.032 inch thick, with predrilled holes for attachment hardware.
 2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

 1. Size: Approximately 4 by 7 inches.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.
3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping: Painting of piping is specified in Section 099123 "Interior Painting." Section 099600 "High-Performance Coatings."

B. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 a. Wet-Pipe Sprinkler System: 2 inches, round.
 b. Dry-Pipe Sprinkler System: 2 inches, round.
3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 210553
SECTION 211119 - FIRE-DEPARTMENT CONNECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exposed-type fire-department connections.
2. Flush-type fire-department connections.
3. Yard-type fire-department connections.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection.

PART 2 - PRODUCTS

2.1 EXPOSED-TYPE FIRE-DEPARTMENT CONNECTION

A. Standard: UL 405.

B. Type: Exposed, projecting, for wall mounting.

C. Pressure Rating: 175 psig minimum.

D. Body Material: Corrosion-resistant metal.

E. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.

F. Caps: Brass, lugged type, with gasket and chain.

G. Escutcheon Plate: Round, brass, wall type.

H. Outlet: Back, with pipe threads.
I. Number of Inlets: Three.
J. Escutcheon Plate Marking: Similar to “AUTO SPKR.”
K. Finish: Polished chrome plated.
L. Outlet Size: NPS 4 or NPS 6 as required.

2.2 FLUSH-TYPE FIRE-DEPARTMENT CONNECTION
A. Standard: UL 405.
B. Type: Flush, for wall mounting.
C. Pressure Rating: 175 psig minimum.
D. Body Material: Corrosion-resistant metal.
E. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
F. Caps: Brass, lugged type, with gasket and chain.
G. Escutcheon Plate: Rectangular, brass, wall type.
H. Outlet: With pipe threads.
I. Body Style: Vertical.
J. Number of Inlets: Three.
K. Outlet Location: Back.
L. Escutcheon Plate Marking: Similar to "AUTO SPKR."
M. Finish: Polished chrome plated.
N. Outlet Size: NPS 4 or NPS 6.

2.3 YARD-TYPE FIRE-DEPARTMENT CONNECTION
A. Standard: UL 405.
B. Type: Exposed, freestanding.
C. Pressure Rating: 175 psig minimum.
D. Body Material: Corrosion-resistant metal.
E. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.

F. Caps: Brass, lugged type, with gasket and chain.

G. Escutcheon Plate: Round, brass, floor type.

H. Outlet: Bottom, with pipe threads.

I. Number of Inlets: Three.

J. Sleeve: Brass.

K. Sleeve Height: 18 inches.

L. Escutcheon Plate Marking: Similar to "AUTO SPKR."

M. Finish: Polished chrome plated.

N. Outlet Size: NPS 4 or NPS 6.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fire-department connections.

B. Examine roughing-in for fire-suppression standpipe system to verify actual locations of piping connections before fire-department connection installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-type fire-department connections.

B. Install yard-type fire-department connections in concrete slab support. Comply with requirements for concrete in Section 033000 "Cast-in-Place Concrete."

C. Install three protective pipe bollards around each fire-department connection. Comply with requirements for bollards in Section 055000 "Metal Fabrications."

D. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION 211119
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Fire-protection valves.
5. Pressure gages.

B. Related Sections:

1. Section 211313 "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.

1.2 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.3 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.4 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design of sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer registered in the state of New Jersey, using performance requirements and design criteria indicated.

C. Sprinkler system design shall be approved by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent or 10psi, whichever is greater, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications shall be as indicated on Rock Brook drawings.
3. Minimum Density for Automatic-Sprinkler Piping Design:

 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft.area.
b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area
c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area

4. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft.
 b. Laboratory Areas: 130 sq. ft.
 c. Storage Areas: 130 sq. ft.
 d. Mechanical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 and unless otherwise indicated.

5. Total Combined Hose-Stream Demand Requirement:
 a. Light-Hazard Occupancies: 100 gpm
 b. Ordinary-Hazard Occupancies: 250 gpm

D. Seismic Performance: Provide seismic bracing per NFPA 13.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work. Shop drawings shall also include location of all pipe supports and elevation of mains. Subsequent submission of shop drawings shall clearly identify revisions with a revision bubble and description.

C. Delegated-Design Submittal: Sprinkler systems shall comply with performance requirements and design criteria shown on the drawings. Delegated design submittal is to include hydraulic calculations and shop drawings, signed and sealed by the qualified professional engineer responsible for their preparation, licensed in the state of the project location.

D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping and equipment.
 2. Storm Drain piping
 3. HVAC hydronic piping, ductwork, and equipment.
 4. Ceiling elevations- sprinkler mains and branch piping shall be elevated or relocated to accommodate changes in ceiling elevation.
 5. Items penetrating finished ceiling include, but are not limited to, the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Folding doors

E. Qualification Data: For qualified Installer and professional engineer.

F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
G. Welding certificates.

H. Fire-hydrant flow test report. This shall include date and location of test. Date of test shall be recent, within 1 year of submittal, unless more recent test is required by the AHJ.

I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

J. Field quality-control reports.

K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."

1.7 PROJECT CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 1. Notify Owner no fewer than three days in advance of proposed interruption of sprinkler service.
 2. Do not proceed with interruption of sprinkler service without Owner's written permission.
1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Coordinate layout of piping with changes in ceiling elevation.

C. Coordinate layout of fire pump room.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Black Steel Pipe: ASTM A 53. Pipe ends may be factory or field formed to match joining method.

B. Schedule 10, Black Steel Pipe: ASTM A 135. Pipe ends to match joining method.

C. Black Steel Pipe Nipples: ASTM A 733, standard-weight, seamless steel pipe with threaded ends.

D. Cast Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

G. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Pressure Rating: 175 psig minimum.

2.3 PIPING JOINING MATERIALS

 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed and FM approved.

B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 5. Valves NPS 3: Ductile-iron body with groved ends.

C. Bronze Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.

2. Standard: UL 1091.
5. End Connections: Threaded.

D. Iron Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Pratt, Henry Company.
 h. Shurjoint Piping Products.
 i. Tyco Fire & Building Products LP.
 j. Victaulic Company.

2. Standard: UL 1091.
4. Body Material: Cast or ductile iron.
5. End Connections: Grooved.

E. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 c. Anvil International, Inc.
 d. Clow Valve Company; a division of McWane, Inc.
 e. Crane Co.; Crane Valve Group; Crane Valves.
 f. Crane Co.; Crane Valve Group; Jenkins Valves.
 g. Crane Co.; Crane Valve Group; Stockham Division.
 h. Fire-End & Croker Corporation.
 i. Fire Protection Products, Inc.
 j. Fivalco Inc.
 k. Globe Fire Sprinkler Corporation.
 l. Groeniger & Company.
m. Kennedy Valve; a division of McWane, Inc.
n. Matco-Norca.
o. Metraflex, Inc.
p. Milwaukee Valve Company.
q. Mueller Co.; Water Products Division.
r. NIBCO INC.
s. Potter Roemer.
t. Reliable Automatic Sprinkler Co., Inc.
u. Shurjoint Piping Products.
v. Tyco Fire & Building Products LP.
w. United Brass Works, Inc.
x. Venus Fire Protection Ltd.
y. Victaulic Company.
z. Viking Corporation.
aa. Watts Water Technologies, Inc.

3. Pressure Rating: 250 psig minimum
4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.

5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. Hammond Valve.
 h. Milwaukee Valve Company.
H. Indicating-Type Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:

2. Pressure Rating: 175 psig minimum.

B. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Barnett.
 d. Conbraco Industries, Inc.; Apollo Valves.
 e. Fire-End & Croker Corporation.
 f. Fire Protection Products, Inc.
 g. Flowserve.
 h. FNW.
 i. Jomar International, Ltd.
 j. Kennedy Valve; a division of McWane, Inc.
 k. Kitz Corporation.
 l. Legend Valve.
 m. Metso Automation USA Inc.
 n. Milwaukee Valve Company.
 o. NIBCO INC.
 p. Potter Roemer.
q. Red-White Valve Corporation.
r. Southern Manufacturing Group.
s. Stewart, M. A. and Sons Ltd.
t. Tyco Fire & Building Products LP.
u. Victaulic Company.
v. Watts Water Technologies, Inc.

D. Globe Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

E. Plug Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Southern Manufacturing Group.

2.6 SPECIALTY VALVES

A. General Requirements:

2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
3. Body Material: Cast or ductile iron.
4. Size: Same as connected piping.
5. End Connections: Flanged or grooved.

B. Alarm Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
3. Design: For horizontal or vertical installation.
4. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.

4. Type: Automatic draining, ball check.
5. Size: NPS 3/4

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.

5. Type: Mechanical-T and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2.8 SPINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFAC Inc.
3. Reliable Automatic Sprinkler Co., Inc.
4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:

C. Automatic Sprinklers with Heat-Responsive Element:

1. Nonresidential Applications: UL 199.
2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6 or larger, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes: See Section 3.14, Sprinkler Schedule.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
c. Potter Electric Signal Company.
d. System Sensor; a Honeywell company.
e. Viking Corporation.
f. Watts Industries (Canada) Inc.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

C. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

D. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.
2.10 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AMETEK; U.S. Gauge Division.
2. Ashcroft, Inc.
4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include "AIR" or "AIR/WATER" label on dial face.

2.11 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One-Piece, Cast-Brass Escutcheons: Polished chrome-plated.

C. Split-Casting Escutcheons: Polished chrome-plated.

D. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

2.12 SLEEVES

A. Cast-Iron Wall Pipe Sleeves: Cast or fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, standard weight, zinc coated, plain ends.

2.13 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex, Inc.
4. Pipeline Seal and Insulator, Inc.
B. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.14 GROUT

A. Standard: ASTM C 1107, Grade B, post hardening and volume adjusting, dry, hydraulic-cement grout.

B. Characteristics: Nonshrink, and recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in “Quality Assurance” Article.

B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping and sprinklers as indicated, as far as practical.

1. Deviations from approved working plans require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage. Auxiliary drains are to be noted on shop drawings.

H. Install alarm devices in piping systems.

I. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

J. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

K. Fill sprinkler system piping with water.

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels, unless noted otherwise. Location of sprinklers shall be as shown on design drawings unless alternate location approved by architect and engineer.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

3.6 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 5. Bare Piping in Equipment Rooms: One piece, cast brass.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.
C. Escutcheons for Existing Piping:
 2. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
 3. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
 4. Bare Piping at Ceiling Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
 5. Bare Piping in Unfinished Service Spaces: Split casting, cast brass with polished chrome-plated finish.
 6. Bare Piping in Equipment Rooms: Split casting, cast brass.
 7. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.7 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

D. Install sleeves in new partitions, slabs, and walls as they are built.

E. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

F. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

G. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals.

H. Seal space outside of sleeves in concrete slabs and walls with grout.

I. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

J. Install sleeve materials according to the following applications:

 1. Sleeves for Piping Passing through Concrete Floor Slabs: Galvanized-steel pipe.
 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Galvanized-steel pipe.

 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements for flashing in Division 07 Section "Sheet Metal Flashing and Trim."
3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 a. Galvanized-steel-pipe sleeves for pipes smaller than NPS 6
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water-supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Galvanized-steel pipe.

5. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Galvanized-steel-pipe sleeves for pipes smaller than NPS 6
 b. Cast-iron wall-pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Galvanized-steel-pipe sleeves for pipes smaller than NPS 6
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.

K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.8 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.9 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.11 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.12 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.13 PIPING SCHEDULE
A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
B. Standard-pressure, wet-pipe sprinkler system, NPS 2 inch and smaller, shall be the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 inch and larger, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.14 SPRINKLER SCHEDULE
A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Concealed sprinklers.
 4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
 5. Special Applications: quick-response sprinklers where indicated.
B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate (unless other cover plate finish is indicated on plans)
2. Upright Pendent and Sidewall Sprinklers: White vinyl in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313
SECTION 211316 - DRY-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 5. Control panels.
 6. Pressure gages.

B. Related Sections:
 1. Section 211313 "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Dry-pipe sprinkler system piping designed to operate at working pressure 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Dry-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing compressed air. Opening of sprinklers releases compressed air and permits water pressure to open dry-pipe valve. Water then flows into piping and discharges from sprinklers that are open.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer registered in the state of New Jersey, using performance requirements and design criteria indicated.

1. Available fire-hydrant flow test records indicate the following conditions:

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
a. Date: July 3, 2018.
b. Performed by: Matthew Z. Kensil, PE of Pennoni Associates inc..
c. Location of Residual Fire Hydrant R: Hydrant 7 at Laurel Hall South end.
d. Location of Flow Fire Hydrant F: Hydrant 8 at Oak Hall South End.
e. Static Pressure at Residual Fire Hydrant R: 46 psig.
g. Residual Pressure at Residual Fire Hydrant R: 34 psig.

C. Sprinkler system design shall be approved by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent or 10psi, whichever is greater, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications shall be as indicated on Rock Brook drawings.
3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
4. Maximum Protection Area per Sprinkler: Per UL listing.
5. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft..
 b. Storage Areas: 130 sq. ft..
 c. Mechanical Equipment Rooms: 130 sq. ft..
 d. Electrical Equipment Rooms: 130 sq. ft..
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.
6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.

D. Seismic Performance: Provide seismic bracing according to NFPA 13.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For dry-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.7 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC hydronic piping.
 3. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

B. Qualification Data: For qualified Installer and professional engineer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

A. Fire-hydrant flow test report. This shall include date and location of test. Date of test shall be recent, within 1 year of submittal, unless more recent test is required by the AHJ.

B. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

C. Field quality-control reports.

D. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.9 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."
2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.10 PROJECT CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Owner no fewer than three days in advance of proposed interruption of sprinkler service.
2. Do not proceed with interruption of sprinkler service without Owner's written permission.

1.11 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Galvanized-Steel Pipe: ASTM A 53/A 53. Pipe ends may be factory or field formed to match joining method.

D. Galvanized, Steel Couplings: ASTM A 865, threaded.

E. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

F. Malleable- or Ductile-Iron Unions: UL 860.

H. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS
 1. Class 125, Cast-Iron and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron and Class 300, Raised-Face Flanges: Ring-type gaskets.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.4 LISTED FIRE-PROTECTION VALVES
A. General Requirements:
 1. Valves shall be UL listed and FM approved.
B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.

 2. Standard: UL 1091.
 5. End Connections: Threaded.

D. Iron Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Pratt, Henry Company.
 h. Shurjoint Piping Products.
 i. Tyco Fire & Building Products LP.
 j. Victaulic Company.

 2. Standard: UL 1091.
 4. Body Material: Cast or ductile iron.
 5. Style: Lug or wafer.

E. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Clow Valve Company; a division of McWane, Inc.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 g. Fire Protection Products, Inc.
h. Globe Fire Sprinkler Corporation.
i. Kennedy Valve; a division of McWane, Inc.
j. Milwaukee Valve Company.
k. Mueller Co.; Water Products Division.
l. NIBCO INC.
m. Potter Roemer.
n. Reliable Automatic Sprinkler Co., Inc.
o. Shurjoint Piping Products.
p. Tyco Fire & Building Products LP.
q. United Brass Works, Inc.
r. Victaulic Company.
s. Viking Corporation.
t. Watts Water Technologies, Inc.

2. Standard: UL 312
4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. Milwaukee Valve Company.
d. NIBCO INC.
e. United Brass Works, Inc.

5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:

a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
b. American Valve, Inc.
c. Clow Valve Company; a division of McWane, Inc.
d. Crane Co.; Crane Valve Group; Crane Valves.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. Hammond Valve.
h. Milwaukee Valve Company.
i. Mueller Co.; Water Products Division.
j. NIBCO INC.
k. Shurjoint Piping Products.
l. Tyco Fire & Building Products LP.
m. United Brass Works, Inc.
n. Watts Water Technologies, Inc.

3. Pressure Rating: [250 psig minimum] [300 psig].
4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:

 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:

 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
3. Pressure Rating: [250 psig minimum] [300 psig].
5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 published by FM Global, listing.
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Barnett.
 d. Conbraco Industries, Inc.; Apollo Valves.
 e. Fire-End & Croker Corporation.
 f. Fire Protection Products, Inc.
 g. Flowserv.
 h. FNW.
 i. Jomar International, Ltd.
 j. Kennedy Valve; a division of McWane, Inc.
 k. Kitz Corporation.
 l. Legend Valve.
 m. Metso Automation USA Inc.
 n. Milwaukee Valve Company.
 o. NIBCO INC.
 p. Potter Roemer.
 q. Red-White Valve Corporation.
 r. Southern Manufacturing Group.
D. Globe Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

2.6 SPECIALTY VALVES

A. General Requirements:

2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
3. Body Material: Cast or ductile iron.
4. Size: Same as connected piping.
5. End Connections: Flanged or grooved.

B. Dry-Pipe Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.

2. Standard: UL 260
4. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
5. Air-Pressure Maintenance Device:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1) Retain option in first subparagraph below if manufacturer's name and model number are indicated in schedules or plans on Drawings; delete option and insert manufacturer's name and model number if not included on Drawings.
2) Reliable Automatic Sprinkler Co., Inc.
3) Victaulic Company.
4) Viking Corporation.

c. Type: Automatic device to maintain minimum air pressure in piping.
d. Include shutoff valves to permit servicing without shutting down sprinkler piping, bypass valve for quick filling, pressure regulator or switch to maintain pressure, strainer, pressure ratings with 14- to 60-psig adjustable range, and 175-psig outlet pressure.

6. Air Compressor:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Retain option in first subparagraph below if manufacturer's name and model number are indicated in schedules or plans on Drawings; delete option and insert manufacturer's name and model number if not included on Drawings.
 2) Reliable Automatic Sprinkler Co., Inc.
 3) Victaulic Company.
 4) Viking Corporation.
 d. Power: 120-V ac, 60 Hz, single phase.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. General Requirements for Dry-Pipe-System Fittings: [UL listed] <Insert standard> for dry-pipe service.

B. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
5. Type: Mechanical-T and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

C. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

D. Branch Line Testers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

E. Sprinkler Inspector’s Test Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
e. Viking Corporation.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

F. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.

5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

2.8 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFAC Inc.
3. Reliable Automatic Sprinkler Co., Inc.
4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:

C. Automatic Sprinklers with Heat-Responsive Element:

1. Nonresidential Applications: UL 199.
2. Characteristics: Nominal 1/2-inch orifice with discharge coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
D. Sprinkler Finishes: See Section 3.14, Sprinkler Schedule

E. Sprinkler Guards:
 2. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

A. Water-Flow Indicators:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 5. Type: Paddle operated.
 7. Design Installation: Horizontal or vertical.

B. Pressure Switches:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.
 3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

C. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.10 CONTROL PANELS

A. Description: Single-area, two-area, or single-area cross-zoned type control panel as indicated, including NEMA ICS 6, Type 1 enclosure, detector, alarm, and solenoid-valve circuitry for operation of deluge valves. Panels contain power supply; battery charger; standby batteries; field-wiring terminal strip; electrically supervised solenoid valves and polarized fire-alarm bell; lamp test facility; single-pole, double-throw auxiliary alarm contacts; and rectifier.

1. Panels: UL listed and FM Global approved when used with thermal detectors and Class A detector circuit wiring. Electrical characteristics are 120-V ac, 60 Hz, with 24-V dc rechargeable batteries.
2. Manual Control Stations: Electric operation, metal enclosure, labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.
3. Manual Control Stations: Hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.11 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AMETEK; U.S. Gauge Division.
2. Ashcroft, Inc.
4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 13 for installation of sprinkler piping.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Connect compressed-air supply to dry-pipe sprinkler piping.

I. Connect air compressor to the following piping and wiring:

1. Pressure gages and controls.
2. Electrical power system.
3. Fire-alarm devices, including low-pressure alarm.

J. Install alarm devices in piping systems.
K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements in NFPA 13 for hanger materials.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Drain dry-pipe sprinkler piping.

N. Pressurize and check dry-pipe sprinkler system piping and air-pressure maintenance devices air compressors.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 2. Dry-Pipe Valves: Install trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 a. Install air compressor and compressed-air supply piping.
 b. Air-Pressure Maintenance Device: Install shutoff valves to permit servicing without shutting down sprinkler system; bypass valve for quick system filling; pressure regulator or switch to maintain system pressure; strainer; pressure ratings with 60-psig adjustable range; and 175-psig maximum inlet pressure.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in unheated, combustible attic spaces, unless noted otherwise. Location of sprinklers shall be as shown on design drawings unless alternate location approved by architect and engineer.

B. Install dry-type sprinklers with water supply from heated space or provide dry type sprinkler distribution piping in unheated attic space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

3.6 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
5. Bare Piping in Equipment Rooms: One piece, cast brass.
6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.7 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

D. Install sleeves in new partitions, slabs, and walls as they are built.

E. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

F. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

G. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals.

H. Seal space outside of sleeves in concrete slabs and walls with grout.

I. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

J. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Galvanized-steel pipe.
2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Galvanized-steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements for flashing in Division 07 Section "Sheet Metal Flashing and Trim."

3. Sleeves for Piping Passing through Gypsum-Board Partitions:
b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.
c. Exception: Sleeves are not required for water-supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Galvanized-steel pipe.
5. Sleeves for Piping Passing through Exterior Concrete Walls:
 b. Cast-iron wall-pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.

K. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.8 SLEEVE SEAL INSTALLATION
 A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
 B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.9 IDENTIFICATION
 A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
 B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL
 A. Perform tests and inspections.
 B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
5. Start and run air compressors.
6. Coordinate with fire-alarm tests. Operate as required.
7. Coordinate with fire-pump tests where applicable. Operate as required.
8. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.11 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.12 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, drain, and maintain specialty valves.

3.13 PIPING SCHEDULE
A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
B. Standard-pressure, dry-pipe sprinkler system, NPS 2 and smaller, shall be the following:
 1. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
C. Standard-pressure, dry-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 2. Schedule 10, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.14 SPRINKLER SCHEDULE
A. Use sprinkler types in subparagraphs below for the following applications:
 1. Spaces Subject to Freezing: Attic type, upright, dry pendent sprinklers; and dry sidewall sprinklers as indicated.
B. Provide sprinkler types in subparagraphs below with finishes indicated.
1. Upright, Pendent, and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view.

END OF SECTION 211316
DIVISION 22

PLUMBING
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
 B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
 C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS
 A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
C. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.

4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 “Penetration Firestopping.”

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls below Grade:
 a. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1. Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

2. Concrete Slabs-on-Grade:
 1. Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs above Grade:
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves Stack-sleeve fittings.

4. Interior Partitions:
b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 h. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

2. Escutcheons for Existing Piping use Split-Casting Brass Type with polished, chrome-plated finish in place of One-piece escutcheons as indicated in New Piping applications above.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.
 5. Test plugs.
 6. Test-plug kits.
 B. Related Sections:
 1. Section 211313 "Wet-Pipe Sprinkler Systems"
 2. Section 221116 "Domestic Water Piping" for water meters inside the building.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For meters and gages to include in operation and
 maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
 A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
2. Case: Cast aluminum; 7-inch (178-mm) nominal size unless otherwise indicated.
3. Case Form: Adjustable angle unless otherwise indicated.
4. Tube: Glass with magnifying lens and red organic liquid.
5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Stem: Aluminum and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CSA.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 2. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch (114-mm) nominal diameter.
 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 8. Window: Glass.
 9. Ring: Metal.
 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
2.4 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Description: Test-station fitting made for insertion into piping tee fitting.

B. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

C. Thread Size: NPS 1/4 (DN 8) or NPS 1/2 (DN 15), ASME B1.20.1 pipe thread.

D. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).

E. Core Inserts: EPDM self-sealing rubber.

2.6 TEST-PLUG KITS

A. Furnish one test-plug kit containing one thermometer, one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

B. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F (minus 18 to plus 104 deg C).

C. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be at least 0 to 200 psig (0 to 1380 kPa).

D. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snubber in piping for each pressure gage for fluids.

H. Install test plugs in piping tees.

I. Install thermometers in the following locations:
 1. Inlet and outlet of each laboratory water heater.
 2. Inlets and outlets of each domestic water heater.

J. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each reduced pressure zone backflow preventer valve.
 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.

B. Thermometers at inlets and outlets of each laboratory water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F (0 to 150 deg C).
3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:
 1. Liquid-filled, direct-mounted, metal case.

B. Pressure gages at inlet and outlet of each water reduced pressure zone backflow preventer valve shall be the following:
 1. Test plug with EPDM self-sealing rubber inserts.

C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 1. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 160 psi (0 to 1100 kPa).

B. Scale Range for Domestic Water Piping: 0 to 160 psi (0 to 1100 kPa).

END OF SECTION 220519
SECTION 220523.10 – GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze ball valves.
 2. Bronze swing check valves.
 3. Iron swing check valves.
 4. Bronze gate valves.
 5. Iron gate valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, soldered ends, grooves, and weld ends.
4. Set check valves in either closed or open position.
5. Set gate valves closed to prevent rattling.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. Refer to valve schedule articles for applications of valves.

C. ASME Compliance:

1. ASME B1.20.1 for threads for threaded end valves.
2. ASME B16.1 for flanges on iron valves.
3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
5. ASME B31.9 for building services piping valves.

D. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. RS Valves in Insulated Piping: With 2-inch (50-mm) stem extensions.

I. Valve Bypass and Drain Connections: MSS SP-45.

J. Valve Actuator Types:

1. Hand lever: For quarter-turn valves smaller than NPS 6 (DN 150).
2. Handwheel: For valves other than quarter-turn valves.

K. Valves in Insulated Piping:
1. Include 2-inch (50-mm) stem extensions.
2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze Trim:

1. Description:
 b. CWP Rating: 600 psig (4140 kPa).
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze.
 h. Ball: Stainless Steel.
 i. Port: Full.

2.3 BRONZE SWING CHECK VALVES

A. Class 125, Bronze, Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig (2070 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

2.4 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:

1. Description:
a. Standard: MSS SP-71, Type I.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged or threaded. See valve schedule articles.
f. Trim: Composition.
g. Seat Ring: Bronze.
h. Disc Holder: Bronze.
i. Disc: PTFE.
j. Gasket: Asbestos free.

2.5 BRONZE GATE VALVES

A. Class 150, NRS, Bronze Gate Valves:

1. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 300 psig (2070 kPa).
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.6 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Material: Gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

1. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Material: Gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:
1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.

C. If valve applications are not indicated, use the following:

1. Shut Off Service: Ball valves.
2. Throttling Service: Ball valves.
3. Pump-Discharge Check Valves:
 a. NPS 2-1/2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 3 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; or iron, center-guided, metal-seat or resilient-seat check valves.
 c. NPS 2-1/2 (DN 65) and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

D. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

E. End Connections:

1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded or soldered.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged or threaded.
3. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded.
4. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged or threaded.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Two-piece, bronze ball valves with full port and bronze trim.
3. Bronze swing check valves, Class 125, bronze disc with soldered end connections.

B. Pipe NPS 2-1/2 (DN 65) and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
2. Iron swing check valves, Class 125, nonmetallic-to-metal seats with flanged end connections.
3. Iron gate valves, Class 125, NRS with flanged ends.

END OF SECTION 220523.10
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Metal framing systems.
3. Fastener systems.
4. Pipe stands.
5. Pipe positioning systems.
6. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive structural engineering analysis by a qualified professional structural engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Where required, Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
1.6 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.7 QUALITY ASSURANCE
 A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS
 A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.2 METAL FRAMING SYSTEMS
 A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.3 FASTENER SYSTEMS
 A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.4 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
 1. Where multiple utilities are supported, supports shall account for all piping system weights, weight of hangers and an additional 200 pounds.
 2. A Structural Engineer shall review all loads imposed on the structure.

C. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

D. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories. Attachments are to be made to building concrete, steel or wood structure.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments, within one foot of concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and within one foot of changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3: 12 inches long and 0.048 inch (1.22 mm) thick.
 b. NPS 4: 12 inches long and 0.06 inch (1.52 mm) thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch (1.52 mm) thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch (1.91 mm) thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 10.
2. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
3. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
4. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
5. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
6. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 8, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 8, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 8 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

10. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 10 from single rod if horizontal movement caused by expansion and contraction might occur.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 12.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 12 if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
2. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
3. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
2. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
3. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
4. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
5. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
6. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
7. C-Clamps (MSS Type 23): For structural shapes.
8. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
9. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
10. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
11. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
12. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
13. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
14. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
15. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
16. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.
 5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness and having predrilled or stamped holes for attachment hardware.
 2. Letter Color: Black.
 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for...
greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Minimum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Pre-coiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.

2. Fasteners: Reinforced grommet and wire.

3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of plumbing equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 09.

B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Domestic Cold Water (CW) Piping:
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
Section 220553 – Page 5
DCA Permit Set 08-15-2018

a. Background: Green.

2. Domestic Hot Water (HW) and Hot Water Return (HWR) Piping:
 a. Background: Yellow.
 b. Letter Colors: Black.

3. Sanitary Waste (SAN) and (VENT) and Storm Water (SW) and misc. clear water waste Piping:
 a. Background Color: Green.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Colors:
 b. Hot Water: Natural.

3. Letter Colors:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Domestic chilled-water piping for drinking fountains.
 5. Sanitary waste piping exposed to freezing conditions.
 6. Storm-water piping exposed to freezing conditions.
 7. Roof drains and horizontal rainwater leaders.
 8. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:
 1. Section 220716 "Plumbing Equipment Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 **INSULATING CEMENTS**

A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.

2.3 **ADHESIVES**

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 **MASTICS**

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 2. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

2.5 SEALANTS

A. Joint Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. ASJ Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.7 SECUREMENTS
A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

2.8 PROTECTIVE SHIELDING GUARDS
A. Protective Shielding Pipe Covers:
 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS
A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.
3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
C. Horizontal Storm Water and Overflow:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1/2 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

F. Cold Water and Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

G. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

H. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

I. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inches thick.

END OF SECTION 220719
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. All underground utility work on Rowan property must be approved by the Director of Central Utilities.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for fire-service mains.

1.3 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.

E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.

F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
 1. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Owner's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company or AHJ.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Application" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe, outside coated: AWWA C104, cement mortar-lined with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

 C. Flanges: ASME 16.1, Class 125, cast iron.

2.3 SPECIAL PIPE FITTINGS

 A. Ductile-Iron Rigid Expansion Joints:
 1. Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spiqot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

 B. Ductile-Iron Flexible Expansion Joints:
 1. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig (1725 kPa) minimum.

2.4 JOINING MATERIALS

 A. Refer to Section 330500 "Common Work Results for Utilities" for commonly used joining materials.

 B. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.5 PIPING SPECIALTIES

 A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

 B. Tubular-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
b. Center-Sleeve Material: Manufacturer's standard.
c. Gasket Material: Natural or synthetic rubber.
d. Pressure Rating: 150 psig (1035 kPa) minimum.
e. Metal Component Finish: Corrosion-resistant coating or material.

C. Split-Sleeve Pipe Couplings:

1. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 b. Sleeve Material: Manufacturer's standard.
 c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 e. Pressure Rating: 150 psig (1035 kPa) minimum.
 f. Metal Component Finish: Corrosion-resistant coating or material.

D. Flexible Connectors:

1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.
2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

E. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
2. Dielectric Flanges:
 a. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 150 psig.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
3. Dielectric-Flange Insulating Kits:
 a. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.
2.6 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Piping:
 1. Standards: ASTM A 674 or AWWA C105.
 2. Form: Sheet or tube.
 3. Material: LLDPE film of 0.008-inch minimum thickness.

B. UL/FMG, Cast-Iron Gate Valves:
 1. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig (1207 kPa).
 3) End Connections: Flanged.

2.7 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:
 1. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: AWWA, cast-iron, nonrising-stem, resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.8 BACKFLOW PREVENTERS

A. Double-Check, Detector-Assembly Backflow Preventers:
 1. Watts, no substitutions.
 2. Standards: ASSE 1048 and UL listed or FMG approved.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 5 psig (35 kPa) maximum, through middle 1/3 of flow range.
 5. Size: See drawings.
 6. Design Flow Rate: See hydraulic calculations and coordinate with Fire Protection Contractor.
 8. Configuration: Designed for horizontal, straight through flow.
 9. Accessories:

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

B. Backflow Preventer Test Kits:
 1. Watts, no substitutions.
 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.9 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:
 1. Match existing manufacturer and model number.
 2. Description: Wall mounted or Freestanding outside collapse zone of building as required by local AHJ, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch high brass sleeve; and round escutcheon plate.

 b. Connections: Two NPS 2-1/2 inlets and one NPS 4 outlet or,
 c. Connections: Three NPS 2-1/2 inlets and one NPS 6 outlet as required by hydraulic calculations coordinate with Fire Protection Contractor.
 d. Inlet Alignment: Inline, horizontal.
 e. Finish Including Sleeve: Polished chrome-plated.
 f. Escutcheon Plate Marking: "AUTO SPKR."

2.10 ALARM DEVICES

A. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.

B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.
PART 3 - EXECUTION

3.1 EARTHWORK
 A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS
 A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.
 B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 C. Do not use flanges or unions for underground piping.
 D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
 E. Underground Fire-Service-Main Piping NPS 6 to NPS 8 shall be any of the following:
 1. Ductile-iron, mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.
 F. Aboveground Fire-Service-Main Piping NPS 4 to NPS 8 shall be schedule 10 black steel, plain or hot dipped galvanized. See fire protection specifications and coordinate transitions with sprinkler contractor.

3.3 VALVE APPLICATIONS
 A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts.
 B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Underground Valves, NPS 4 (DN 100) and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
 2. Use the following for valves aboveground:
 a. Gate Valves, NPS 4 and Larger: UL/FMG, cast iron, OS&Y rising stem.
 b. Check Valves: UL/FMG, swing type.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS
 A. See Section 330500 "Common Work Results for Utilities" for piping-system common requirements.
3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Comply with NFPA 24 for fire-service-main piping materials and installation.

E. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

F. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 1. Under Driveways: With at least 36 inches cover over top.

G. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

H. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

I. Sleeves are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

J. Mechanical sleeve seals are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

K. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

L. See Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.
3.6 INSTALLATION OF HANGERS AND SUPPORTS

A. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

B. Install hangers for copper tubing with maximum spacing and minimum rod diameters to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

C. Support horizontal piping within 12 inches of each fitting and coupling.

D. Support vertical runs of copper tubing to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 JOINT CONSTRUCTION

A. See Section 330500 "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:

2. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-iron-piping couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
3. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

 a. Dielectric Fittings for NPS 4 and Larger: Use dielectric flange kits.

3.8 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
3. Bolted flanged joints.
4. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.9 VALVE INSTALLATION

A. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

B. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

C. MSS Valves: Install as component of connected piping system.

3.10 WATER METER INSTALLATION

A. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 BACKFLOW PREVENTER INSTALLATION

A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.

B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.

C. Do not install bypass piping around backflow preventers.

D. Support NPS 4 and larger backflow preventers, valves, and piping off floor and on pipe stations attached to backflow preventer flange bolts.

3.12 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

B. Install protective pipe bollards on three sides of each fire department connection. Pipe bollards are specified in Section 055000 "Metal Fabrications."

3.13 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.
1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.

C. Locking and Sealing: Secure unsupervised valves as follows:
 2. Post Indicators: Install padlock on wrench on indicator post.

D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.

E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.

F. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems" and Section 284621.13 "Conventional Fire-Alarm Systems."

3.14 CONNECTIONS
 A. See Section 330500 "Common Work Results for Utilities" for piping connections to valves and equipment.
 B. Connect fire-distribution piping to interior fire-suppression piping.
 C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.15 FIELD QUALITY CONTROL
 A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
 B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 1. Increase pressure in 50-psig (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
 C. Prepare reports of testing activities.
3.16 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 330500 "Common Work Results for Utilities" for identifying devices.

3.17 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 221113
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 2. Encasement for piping.

B. Related Requirements:
 1. Section 221113 "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.

B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Flanges:
 2. Factory-fabricated, bolted, companion-flange assembly.
 3. Pressure Rating: 125 psig minimum at 180 deg F.
 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

C. Dielectric-Flange Insulating Kits:
 1. Nonconducting materials for field assembly of companion flanges.
 3. Gasket: Neoprene or phenolic.
 4. Bolt Sleeves: Phenolic or polyethylene.
5. Washers: Phenolic with steel backing washers.

D. Dielectric Nipples:
 2. Electroplated steel nipple complying with ASTM F 1545.
 3. Pressure Rating and Temperature: 300 psig at 225 deg F.
 4. End Connections: Male threaded or grooved.
 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
 C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 " Domestic Water Piping Specialties."
 D. Install shutoff valve immediately upstream of each dielectric fitting.
 E. Install water-pressure-reducing valves downstream from shutoff valves where incoming water street pressure to building exceeds 80 psi at the lower level of the building. Comply with requirements for pressure-reducing valves in Section 221119 " Domestic Water Piping Specialties."
 F. Install domestic water piping level without pitch and plumb.
 G. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
 H. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

L. Install piping to permit valve servicing.

M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

N. Install piping free of sags and bends.

O. Install fittings for changes in direction and branch connections.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."

R. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

S. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape to external pipe threads. Thread compound or pipe dope is not to be used

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 6 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 4: 10 feet with 1/2-inch rod.

E. Install supports for vertical copper tubing every 10 feet.
F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 1. Piping Inspections:

 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2. Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1. Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2. Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball valves for piping NPS 2-1/2 and smaller. Use full port two piece bronze bodied ball valves with teflon seat flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball valves for piping NPS 2-1/2 and smaller. Use ball valves with flanged ends for piping NPS 3 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
3. Automatic water shutoff valves.
5. Temperature-actuated, water mixing valves.
7. Drain valves.
8. Water-hammer arresters.
10. Trap-seal primer systems.
11. Specialty valves.
12. Flexible connectors.

B. Related Requirements:

1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Section 221116 "Domestic Water Piping" for water meters.
3. Section 223200 "Domestic Water Filtration Equipment" for water filters in domestic water piping.
4. Section 224716 "Pressure Water Coolers" for water filters for water coolers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1. Include diagrams for power, signal, and control wiring.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 and NSF 14. Mark "NSF-pw" on plastic piping components.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

2. Size: NPS 1/4 to NPS 1-1/2, as required to match connected piping.
4. Inlet and Outlet Connections: Threaded.
5. Finish: Chrome plated where exposed.

B. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.
4. Finish: Chrome or nickel plated.

C. Spill-Resistant Vacuum Breakers:

2. Operation: Continuous-pressure applications.
4. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.4 BACKFLOW PREVENTERS

A. All backflow prevention devices shall be by Watts without substitution.
B. Intermediate Atmospheric-Vent Backflow Preventers:
 1. Standard: ASSE 1012.
 2. Operation: Continuous-pressure applications.
 5. End Connections: Union, solder joint.

C. Reduced-Pressure-Principle Backflow Preventers:
 2. Operation: Continuous-pressure applications.
 3. Pressure Loss: 12 psig maximum, through middle third of flow range.
 4. Size: see drawings.
 5. Design Flow Rate: see drawings.
 6. Selected Unit Flow Range Limits: see drawings.
 7. Pressure Loss at Design Flow Rate: see drawings for sizes NPS 2 and smaller; see drawings for NPS 2-1/2 and larger.
 8. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 9. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 10. Configuration: Designed for horizontal, straight-through flow.
 11. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: NRS, Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

D. Double-Check, Backflow-Prevention Assemblies:
 2. Operation: Continuous-pressure applications unless otherwise indicated.
 3. Pressure Loss: 5 psig maximum, through middle third of flow range.
 4. Size: see drawings.
 5. Design Flow Rate: see drawings.
 6. Selected Unit Flow Range Limits: see drawings.
 7. Pressure Loss at Design Flow Rate: see drawings for sizes NPS 2 and smaller; see drawings for NPS 2-1/2 and larger.
 8. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 9. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 10. Configuration: Designed for horizontal or vertical, as applicable, straight-through flow.
 11. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

E. Beverage-Dispensing-Equipment Backflow Preventers:
2. Operation: Continuous-pressure applications.
5. End Connections: Threaded.

F. Dual-Check-Valve Backflow Preventers:
 2. Operation: Continuous-pressure applications.
 3. Size: NPS 1/2, NPS ¾, NPS 1, NPS 1-1/4 as indicated on drawings.

G. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
 2. Operation: Continuous-pressure applications.
 5. End Connections: Threaded.

H. Hose-Connection Backflow Preventers:
 2. Operation: Up to 10-foot head of water back pressure.
 3. Inlet Size: NPS 1/2 or NPS 3/4.
 5. Capacity: At least 3-gpm flow.

2.5 WATER CONTROL VALVES

A. Water-Control Valves:
 1. Description: Pilot-operated, diaphragm-type, single-seated, main water-control valve.
 2. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
 3. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 b. Pattern: Angle or Globe-valve design.
 c. Trim: Stainless steel.
 4. Design Flow: see drawings.
 5. Design Inlet Pressure: see drawings.
 6. Design Outlet Pressure Setting: see drawings.
 7. End Connections: Flanged for NPS 2-1/2 and larger.

2.6 AUTOMATIC WATER SHUTOFF VALVES

A. Standards: NSF 61 and NSF 372.
B. Water Main Shutoff Valve Actuator: Motor operated, with or without gears, electric and
electronic. Capable of closing valve against inlet pressure. Direct mount, two way; fails
open/open or closed/closed.

1. Actuator Torque: 266 in-lbf.
2. Power Requirements:
 a. Input Voltage: 24 V dc.
 b. Frequency: 60 Hz.
 c. Current: 2 A.
4. Working Time: 8 seconds.
5. Torque Limiter: STD.

C. Domestic Water Heater Shutoff Valve Actuator: Motor operated, with or without gears, electric
and electronic. Capable of closing valve against inlet pressure. Direct mount, two way; fails
open/open or close/close.

1. Power Requirements:
 a. Input Voltage: 24 V ac.
 b. Frequency: 60 Hz.
2. Power Supply: 120-V ac to 24-V ac transformer with cord and plug.
3. Working Time: 45 seconds.
4. Rotation: 90 degrees.
7. Working Temperature: 0 to 100 deg F.
8. Audible Alarm: 83 dB.

D. Actuator Enclosure: Suitable for ambient conditions encountered by application.

1. NEMA 250, Type 2 for indoor and protected applications.

E. Wireless Leak Detection Receiver System:

1. Onboard Battery Backup: 48 hours of protection. Valve to close prior to backup failure.
2. LED Indicators: communication loss, water fault, low temperature fault, and low battery.
3. Output Contacts: Interface with building automation system, cellular text notification
 service, or auto dialer accessories as directed by owner preference.
4. Power Supply: 120 V ac.
5. Self-monitoring enabled system; faults for lost communication between receiver and
 sensor(s).

F. Wired Leak Detection System: Local water sensor.

1. Power Supply: Class II transformer with cord and plug, 120 V ac, UL listed.
a. Power Cord Length: as required, specify in feet when ordering.

2. Control Panel: LED power and LED valves indicator.
3. Alarms: Audible alarm, with external output to BMS and campus security notification.
4. Wired Sensors:
 a. Quantity Per Receiver: as required per device location, refer to plans and details.
 b. Cable Length: as required specify in feet.

G. Accessories:
2. Rope Sensor: Absorbent water sensing rope constructed from twisted metal conductor wires insulated from one another and surrounded by polyethylene mesh braid jacket. Connect up to 100 feet (10 sections) of sensor rope to a single receiver.
3. Electrical Plug Interrupter: Plugs into standard 120-V ac wall outlet.
4. Step-Down Transformer: (water heater supply voltage) ac to 24 V ac with mounting plate, 12-foot plenum wire to power, and 8-foot plenum wire to sensor.
5. Auto Dialer: Send and receive automatic alerts when a fault condition occurs. Standard output contacts trigger up to nine predetermined telephone number calls.
 a. Prerecord message for future playback.
 b. 10-second recordable message.
 c. Built-in tamper switch.
 d. DC adaptor with battery backup.
 e. Programmable as a silent (dialer only) or audible (siren and dialer) alarm.
 f. Easy “Stop Call Sequence” - push “#” on phone to acknowledge the alarm and stop the dialing sequence.
6. Hard-Wired Water Switch: Allows manual override functionality and closes the valve to shut off water flow.

2.7 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
1. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
2. Body: Bronze.
3. Size: Same as connected piping, but not larger than NPS 2.
4. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.8 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
3. Type: Thermostatically controlled, water mixing valve.
5. Connections: Threaded inlets and outlet.
6. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.
9. Valve Finish: Chrome plated where exposed to view.

B. Primary, Thermostatic, Water Mixing Valves:

2. Pressure Rating: 125 psig minimum unless otherwise indicated.
3. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Connections: Threaded or union inlets and outlet.
6. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.
9. Selected Valve Flow Rate at 45-psig Pressure Drop: see drawings.
10. Pressure Drop at Design Flow Rate: 10 psig.
11. Valve Finish: Rough bronze.
12. Piping Finish: Copper.

C. Individual-Fixture, Water Tempering Valves:

1. Standard: ASSE 1070, thermostatically controlled, water tempering valve.
2. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Inlets and Outlet: Threaded.
6. Finish: Rough or chrome-plated bronze.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.

2.9 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.11 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 2. Type: Copper tube with piston.
 3. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
 4. Provide access to all water hammer arrestors including access panels where water hammer arrestors are located in chases or behind walls.
 5. Provide a line size, ball type isolation shut off valve on all water hammer arrestors.

2.12 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device: Provide flow through trap priming devices for hub drains below sink which receive only discharge waste from water heater T&P valves and drain pans.
 4. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 5. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Deep seal traps:
 Provide deep seal traps for all floor drains which receive intermittent waste.
2.13 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:

2. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
3. Cabinet: Surface-mounted steel box with stainless-steel cover.
4. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Number Outlets: as required, see drawings.

2.14 FLEXIBLE CONNECTORS

A. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

2. End Connections NPS 2 and Smaller: Threaded steel pipe nipple.
3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
3. Do not install bypass piping around backflow preventers.

B. Install water-control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
C. Install balancing valves in locations where they can easily be adjusted.

D. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet. Provide additional valved and capped outlet on master mixing valves for use during valve set up and calibration.

E. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve and pump.

F. Install water-hammer arresters in water piping according to PDI-WH 201.

G. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain, mop receptors, funnel drain or hub drain below counter sinks.

H. Install supply-type, trap-seal primer valves with outlet piping pitched down toward hub drain below sink a minimum of 1 percent, and discharge to hub drain with air gap. Adjust valve for proper flow.

I. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
10. Automatic water shutoff valves.
11. Calibrated balancing valves.
12. Primary, thermostatic, water mixing valves.
13. Supply-type, trap-seal primer valves.
14. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to
identifying unit. Nameplates and signs are specified in Section 220553 “Identification for Plumbing Piping and Equipment.”

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

B. Related Sections:
 1. Section 221313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 2. Section 221329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 74, Service classes.
 B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
 C. CISPI, Hubless-Piping Couplings:
 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS
 A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
 C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
SANITARY WASTE AND VENT PIPING
Section 221316 – Page 3
DCA Permit Set 08-15-2018

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 PVC PIPE AND FITTINGS

A. Solid-Wall Schedule 40 PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Shielded, Nonpressure Transition Couplings:
b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

4. Pressure Transition Couplings:
 b. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 c. Center-Sleeve Material: Manufacturer's standard.
 d. Gasket Material: Natural or synthetic rubber.
 e. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:
 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 2. Dielectric Unions:
 a. Description:
 2. Pressure Rating: 125 psig minimum at 180 deg F.
 3. Dielectric Flanges:
 a. Description:
 2. Factory-fabricated, bolted, companion-flange assembly.
 3. Pressure Rating: 125 psig minimum at 180 deg F.
 4. Dielectric-Flange Insulating Kits:
 a. Description:
 1. Nonconducting materials for field assembly of companion flanges.
 3. Gasket: Neoprene or phenolic.
 4. Bolt Sleeves: Phenolic or polyethylene.
 5. Washers: Phenolic with steel backing washers.
 5. Dielectric Nipples:
 a. Description:
 1. Standard: IAPMO PS 66
 2. Electroplated steel nipple.
 3. Pressure Rating: 300 psig at 225 deg F.
 4. End Connections: Male threaded or grooved.
5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTH MOVING
 A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 “Earth Moving.”

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping at indicated slopes.
 G. Install piping free of sags and bends.
 H. Install fittings for changes in direction and branch connections.
 I. Install piping to allow application of insulation.
 J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
 K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer’s written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

1. **Building Sanitary Drain:** 2 percent downward in direction of flow for piping NPS 2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
2. **Horizontal Sanitary Drainage Piping:** 2 percent downward in direction of flow for piping NPS 2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
3. **Vent Piping:** 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install steel piping according to applicable plumbing code.

O. Install underground PVC piping according to ASTM D 2321.

P. Install force mains at elevations indicated.

Q. Plumbing Specialties:

1. Install backwater valves in sanitary waster gravity-flow piping. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 **JOIN CONSTRUCTION**

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Plastic, Non-pressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in OD's.
2. In Drainage Piping: Shielded, non-pressure transition couplings.
4. In Underground Force Main Piping:
 a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:

1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Section 220523.10 – “General Duty Valves For Plumbing Piping.”

B. Shutoff Valves:

1. Install shutoff valve on each sewage pump discharge.
2. Install gate or full-port ball valve for piping NPS 2 and smaller.
3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
D. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 6. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2: 108 inches with 3/8-inch rod.
 2. NPS 2: 10 feet with 3/8-inch rod.
 3. NPS 2-1/2: 11 feet with 1/2-inch rod.
4. NPS 3: 12 feet with 1/2-inch rod.
5. NPS 4: 12 feet with 5/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.
I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Connect force-main piping to the following:
 1. Sanitary Sewer: To exterior force main.
 2. Sewage Pump: To sewage pump discharge.

E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

F. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. **Roughing-in Inspection:** Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. **Final Inspection:** Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. **Roughing-in Plumbing Test Procedure:** Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. **Finished Plumbing Test Procedure:** After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
4. Prepare reports for tests and required corrective action.
3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

C. Aboveground, soil and waste piping NPS 6 and larger shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 2. Galvanized-steel pipe, drainage fittings, and threaded joints.
 3. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

F. Underground, soil and waste piping NPS 6 and larger shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.

G. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

H. Aboveground sanitary-sewage force mains NPS 2-1/2 to NPS 4 shall be the following:
1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Through-penetration firestop assemblies.
 5. Flashing materials.

B. Related Requirements:
 1. Section 221423 "Storm Drainage Piping Specialties" for storm drainage piping inside the
 building, drainage piping specialties, and drains.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.
B. HDPE: High-density polyethylene plastic.
C. PE: Polyethylene plastic.
D. PP: Polypropylene plastic.
E. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating
 characteristics, and accessories for the following:
 1. Floor drains.
1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000.
B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS
A. Exposed Metal Cleanouts:
 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 3. Size: Same as connected drainage piping
 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 5. Closure: Countersunk or raised-head, cast-iron plug.
 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
B. Metal Floor Cleanouts:
 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 2. Standard: ASME A112.36.2M for adjustable housing cast-iron soil pipe with cast-iron ferrule cleanout.
 3. Size: Same as connected branch.
 4. Type: Adjustable housing Cast-iron soil pipe with cast-iron ferrule.
 5. Body or Ferrule: Cast iron.
 6. Clamping Device: As required.
 7. Outlet Connection: Threaded.
8. Closure: Cast-iron plug.
9. Adjustable Housing Material: Cast iron with set-screws or other device.
11. Frame and Cover Shape: Round.
12. Top Loading Classification: Medium Duty.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
15. Size: Same as connected branch.

C. Cast-Iron Wall Cleanouts:

1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

2. Pattern: Floor drain.
3. Trap Features: Trap-seal primer valve drain connection.

B. Stainless-Steel Floor Drains:

1. ASME A112.3.1, Stainless-Steel Floor Drains:
2. Standard: ASME A112.3.1.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

2. Size: Same as connected soil, waste, or vent stack.
3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
5. Special Coating: Corrosion resistant on interior of fittings.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
1. **Description**: Shop or field fabricate from ASTM A 74, Service class, hub-and-spiogt, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spiogt riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.

2. **Size**: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:

1. **Description**: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.

2. **Size**: Same as connected waste piping.

 a. NPS 2: 4-inch-minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

C. Air-Gap Fittings:

1. **Standard**: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.

2. **Body**: Bronze or cast iron.

3. **Inlet**: Opening in top of body.

4. **Outlet**: Larger than inlet.

5. **Size**: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:

1. **Description**: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.

2. **Size**: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings:

1. **Description**: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.

2. **Size**: Same as connected stack vent or vent stack.

F. Expansion Joints:

1. **Standard**: ASME A112.21.2M.

2. **Body**: Cast iron with bronze sleeve, packing, and gland.

3. **End Connections**: Matching connected piping.

4. **Size**: Same as connected soil, waste, or vent piping.

2.5 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:

1. **General Use**: 4.0-lb/sq. ft., 0.0625-inch thickness.

2. **Vent Pipe Flashing**: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

D. Fasteners: Metal compatible with material and substrate being fastened.

E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

F. Solder: ASTM B 32, lead-free alloy.

G. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Assemble open drain fittings and install with top of hub 1 inch above floor.
F. Install deep-seal traps on all floor drains and other waste outlets where indicated.
G. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
H. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
I. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
J. Install wood-blocking reinforcement for wall-mounting-type specialties.
K. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS
A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION
A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.
B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashings or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3.6 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
Table of Contents

Division 2 - Existing Conditions

Section

024118 Selective Demolition and alteration work

Division 21 - Fire Suppression

- 210517 Sleeves and Sleeve Seals for Fire-Suppression Piping
- 210523 General-Duty Valves for Fire Protection Piping
- 210529 Hangers and Supports for Fire Suppression Piping and Equipment
- 210553 Identification for Fire-Suppression Piping and Equipment
- 211119 Fire Department Connections
- 211313 Wet Pipe Sprinkler Systems
- 211316 Dry-Pipe Sprinkler Systems

Division 22 - Plumbing

- 220517 Sleeves and Sleeve Seals for Plumbing Piping
- 220518 Escutcheons for Plumbing Piping
- 220519 Meters and Gages for Plumbing Piping
- 220523.10 General-Duty Valves for Plumbing Piping
- 220529 Hangers and Supports for Plumbing Piping and Equipment
- 220553 Identification for Plumbing Piping and Equipment
- 220719 Plumbing Piping Insulation
- 221113 Facility Water Distribution Piping
- 221116 Domestic Water Piping
- 221119 Domestic Water Piping Specialties
- 221316 Sanitary Waste and Vent Piping
- 221319 Sanitary Waste Piping Specialties

Division 26 - Electrical

- 260500 Common Work Results for Electrical
- 260519 Low-Voltage Electrical Power Conductors and Cables
- 260526 Grounding and Bonding for Electrical Systems
- 260529 Hangers and Supports for Electrical Systems
- 260533 Raceways and Boxes for Electrical Systems
- 260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
- 260553 Identification for Electrical Systems
- 262726 Wiring Devices
DIVISION 27 – COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270000</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>270526</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>270528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>271100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>271500</td>
<td>COMMUNICATIONS HORIZONTAL CABBING</td>
</tr>
</tbody>
</table>

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>DIGITAL ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
SECTION 024118

SELECTIVE DEMOLITION AND ALTERATION WORK

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS
 A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES
 A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:
 1. Alteration and removal work as noted on drawings and as required to complete construction.
 2. Patching and refinishing of existing surfaces damaged as a result of this work.
 3. Protection.

1.3 RELATED SECTIONS
 A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS
 A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING
 A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner's approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner's property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
Selective Demolition and Alteration Work

Section 024118 – Page 3

DCA Permit Set 08-15-2018

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:

1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.

2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor's workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
DIVISION 22

PLUMBING
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT
B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION
A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
C. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION
A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-BARRIER Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 “Penetration Firestopping.”

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls below Grade:
 a. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1. Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

2. Concrete Slabs-on-Grade:
 1. Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs above Grade:
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves Stack-sleeve fittings.

4. Interior Partitions:
b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 h. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

2. Escutcheons for Existing Piping use Split-Casting Brass Type with polished, chrome-plated finish in place of One-piece escutcheons as indicated in New Piping applications above.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.
 5. Test plugs.
 6. Test-plug kits.
 B. Related Sections:
 1. Section 211313 "Wet-Pipe Sprinkler Systems"
 2. Section 221116 "Domestic Water Piping" for water meters inside the building.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
 A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
2. Case: Cast aluminum; 7-inch (178-mm) nominal size unless otherwise indicated.
3. Case Form: Adjustable angle unless otherwise indicated.
4. Tube: Glass with magnifying lens and red organic liquid.
5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Stem: Aluminum and of length to suit installation.

 a. Design for Thermowell Installation: Bare stem.

9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:

 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CSA.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

 2. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch (114-mm) nominal diameter.
 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 8. Window: Glass.
 9. Ring: Metal.
 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
2.4 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Description: Test-station fitting made for insertion into piping tee fitting.

B. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

C. Thread Size: NPS 1/4 (DN 8) or NPS 1/2 (DN 15), ASME B1.20.1 pipe thread.

D. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).

E. Core Inserts: EPDM self-sealing rubber.

2.6 TEST-PLUG KITS

A. Furnish one test-plug kit containing one thermometer, one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

B. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F (minus 18 to plus 104 deg C).

C. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be at least 0 to 200 psig (0 to 1380 kPa).

D. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snubber in piping for each pressure gage for fluids.

H. Install test plugs in piping tees.

I. Install thermometers in the following locations:
 1. Inlet and outlet of each laboratory water heater.
 2. Inlets and outlets of each domestic water heater.

J. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each reduced pressure zone backflow preventer valve.
 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.

B. Thermometers at inlets and outlets of each laboratory water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F (0 to 150 deg C).
3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:
 1. Liquid-filled, direct-mounted, metal case.

B. Pressure gages at inlet and outlet of each water reduced pressure zone backflow preventer valve shall be the following:
 1. Test plug with EPDM self-sealing rubber inserts.

C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 1. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 160 psi (0 to 1100 kPa).

B. Scale Range for Domestic Water Piping: 0 to 160 psi (0 to 1100 kPa).

END OF SECTION 220519
SECTION 220523.10 – GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze ball valves.
2. Bronze swing check valves.
3. Iron swing check valves.
4. Bronze gate valves.
5. Iron gate valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, soldered ends, grooves, and weld ends.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
4. Set check valves in either closed or open position.
5. Set gate valves closed to prevent rattling.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. Refer to valve schedule articles for applications of valves.

C. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 5. ASME B31.9 for building services piping valves.

D. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. RS Valves in Insulated Piping: With 2-inch (50-mm) stem extensions.

I. Valve Bypass and Drain Connections: MSS SP-45.

J. Valve Actuator Types:
 1. Hand lever: For quarter-turn valves smaller than NPS 6 (DN 150).
 2. Handwheel: For valves other than quarter-turn valves.

K. Valves in Insulated Piping:
1. Include 2-inch (50-mm) stem extensions.
2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze Trim:

1. Description:
 b. CWP Rating: 600 psig (4140 kPa).
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze.
 h. Ball: Stainless Steel.
 i. Port: Full.

2.3 BRONZE SWING CHECK VALVES

A. Class 125, Bronze, Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig (2070 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

2.4 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:

1. Description:
a. Standard: MSS SP-71, Type I.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged or threaded. See valve schedule articles.
f. Trim: Composition.
g. Seat Ring: Bronze.
h. Disc Holder: Bronze.
i. Disc: PTFE.
j. Gasket: Asbestos free.

2.5 BRONZE GATE VALVES

A. Class 150, NRS, Bronze Gate Valves:

1. Description:

 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig (2070 kPa).
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.6 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Description:

 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

1. Description:

 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:
1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.

C. If valve applications are not indicated, use the following:

1. Shut Off Service: Ball valves.
2. Throttling Service: Ball valves.
3. Pump-Discharge Check Valves:
 a. NPS 2-1/2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 3 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; or iron, center-guided, metal-seat or resilient-seat check valves.
 c. NPS 2-1/2 (DN 65) and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

D. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

E. End Connections:

1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded or soldered.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged or threaded.
3. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded.
4. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged or threaded.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Two-piece, bronze ball valves with full port and bronze trim.
3. Bronze swing check valves, Class 125, bronze disc with soldered end connections.

B. Pipe NPS 2-1/2 (DN 65) and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
2. Iron swing check valves, Class 125, nonmetallic-to-metal seats with flanged end connections.
3. Iron gate valves, Class 125, NRS with flanged ends.

END OF SECTION 220523.10
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Metal framing systems.
3. Fastener systems.
4. Pipe stands.
5. Pipe positioning systems.
6. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive structural engineering analysis by a qualified professional structural engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Where required, Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
1.6 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.7 QUALITY ASSURANCE
 A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS
 A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.2 METAL FRAMING SYSTEMS
 A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.3 FASTENER SYSTEMS
 A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.4 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
 1. Where multiple utilities are supported, supports shall account for all piping system weights, weight of hangers and an additional 200 pounds.
 2. A Structural Engineer shall review all loads imposed on the structure.

C. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

D. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories. Attachments are to be made to building concrete, steel or wood structure.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments, within one foot of concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and within one foot of changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3: 12 inches long and 0.048 inch (1.22 mm) thick.
 b. NPS 4: 12 inches long and 0.06 inch (1.52 mm) thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch (1.52 mm) thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch (1.91 mm) thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 10.
2. Adjustable, Swivel-Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
3. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
4. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
5. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
6. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 8, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 8, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 8 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

10. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 10 from single rod if horizontal movement caused by expansion and contraction might occur.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 12.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 12 if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
2. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
3. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
2. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
3. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
4. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
5. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
6. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
7. C-Clamps (MSS Type 23): For structural shapes.
8. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
9. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
10. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
11. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
12. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
13. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
14. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
15. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
16. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.
 5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness and having predrilled or stamped holes for attachment hardware.
 2. Letter Color: Black.
 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Pre-coiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.

2. Fasteners: Reinforced grommet and wire.

3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of plumbing equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 09.

B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Domestic Cold Water (CW) Piping:
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
Section 220553 – Page 5
DCA Permit Set 08-15-2018

a. Background: Green.

2. Domestic Hot Water (HW) and Hot Water Return (HWR) Piping:
 a. Background: Yellow.
 b. Letter Colors: Black.

3. Sanitary Waste (SAN) and (VENT) and Storm Water (SW) and misc. clear water waste Piping:
 a. Background Color: Green.

3.5 VALVE-TAG INSTALLATION
 A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
 B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:
 2. Valve-Tag Colors:
 b. Hot Water: Natural.
 3. Letter Colors:

3.6 WARNING-TAG INSTALLATION
 A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Domestic chilled-water piping for drinking fountains.
5. Sanitary waste piping exposed to freezing conditions.
6. Storm-water piping exposed to freezing conditions.
7. Roof drains and horizontal rainwater leaders.
8. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:

1. Section 220716 "Plumbing Equipment Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

G. Mineral-Fiber, Preformed Pipe Insulation:
 1. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
2. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
2. Service Temperature Range: Minus 50 to plus 220 deg F.
3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

2.5 SEALANTS

A. Joint Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. ASJ Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.7 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

2.8 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.
3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
C. Horizontal Storm Water and Overflow:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1/2 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

F. Cold Water and Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

G. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

H. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

I. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
1. All Pipe Sizes: Insulation shall be the following:

a. Flexible Elastomeric: 2 inches thick.

END OF SECTION 220719
SECTION 221113 - FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. All underground utility work on Rowan property must be approved by the Director of Central Utilities.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for fire-service mains.

1.3 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.

E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.

F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
 1. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Owner's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company or AHJ.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Application" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe, outside coated: AWWA C104, cement mortar-lined with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

C. Flanges: ASME 16.1, Class 125, cast iron.

2.3 SPECIAL PIPE FITTINGS

A. Ductile-Iron Rigid Expansion Joints:
 1. Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

B. Ductile-Iron Flexible Expansion Joints:
 1. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig (1725 kPa) minimum.

2.4 JOINING MATERIALS

A. Refer to Section 330500 "Common Work Results for Utilities" for commonly used joining materials.

B. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.5 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
FACILITY WATER DISTRIBUTION PIPING
Section 221113 – Page 5
DCA Permit Set 08-15-2018

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519

b. Center-Sleeve Material: Manufacturer's standard.
c. Gasket Material: Natural or synthetic rubber.
d. Pressure Rating: 150 psig (1035 kPa) minimum.
e. Metal Component Finish: Corrosion-resistant coating or material.

C. Split-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 b. Sleeve Material: Manufacturer's standard.
 c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 e. Pressure Rating: 150 psig (1035 kPa) minimum.
 f. Metal Component Finish: Corrosion-resistant coating or material.

D. Flexible Connectors:
 1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.
 2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

E. Dielectric Fittings:
 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 2. Dielectric Flanges:
 a. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 150 psig.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
 3. Dielectric-Flange Insulating Kits:
 a. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.
2.6 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Piping:

1. Standards: ASTM A 674 or AWWA C105.
2. Form: Sheet or tube.
3. Material: LLDPE film of 0.008-inch minimum thickness.

B. UL/FMG, Cast-Iron Gate Valves:

1. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig (1207 kPa).
 3) End Connections: Flanged.

2.7 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:

1. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: AWWA, cast-iron, nonrising-stem, resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.8 BACKFLOW PREVENTERS

A. Double-Check, Detector-Assembly Backflow Preventers:

1. Watts, no substitutions.
2. Standards: ASSE 1048 and UL listed or FMG approved.
3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig (35 kPa) maximum, through middle 1/3 of flow range.
5. Size: See drawings.
6. Design Flow Rate: See hydraulic calculations and coordinate with Fire Protection Contractor.
8. Configuration: Designed for horizontal, straight through flow.
9. Accessories:
a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

B. Backflow Preventer Test Kits:
1. Watts, no substitutions.
2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.9 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:

1. Match existing manufacturer and model number.
2. Description: Wall mounted or Freestanding outside collapse zone of building as required by local AHJ, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch- high brass sleeve; and round escutcheon plate.

 b. Connections: Two NPS 2-1/2 inlets and one NPS 4 outlet or,
 c. Connections: Three NPS 2-1/2 inlets and one NPS 6 outlet as required by hydraulic calculations coordinate with Fire Protection Contractor.
 d. Inlet Alignment: Inline, horizontal.
 e. Finish Including Sleeve: Polished chrome-plated.
 f. Escutcheon Plate Marking: "AUTO SPKR."

2.10 ALARM DEVICES

A. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.

B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.
PART 3 - EXECUTION

3.1 EARTHWORK
 A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS
 A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.
 B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 C. Do not use flanges or unions for underground piping.
 D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
 E. Underground Fire-Service-Main Piping NPS 6 to NPS 8 shall be any of the following:
 1. Ductile-iron, mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.
 F. Aboveground Fire-Service-Main Piping NPS 4 to NPS 8 shall be schedule 10 black steel, plain or hot dipped galvanized. See fire protection specifications and coordinate transitions with sprinkler contractor.

3.3 VALVE APPLICATIONS
 A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts.
 B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Underground Valves, NPS 4 (DN 100) and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
 2. Use the following for valves aboveground:
 a. Gate Valves, NPS 4 and Larger: UL/FMG, cast iron, OS&Y rising stem.
 b. Check Valves: UL/FMG, swing type.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS
 A. See Section 330500 "Common Work Results for Utilities" for piping-system common requirements.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
3.5 **PIPING INSTALLATION**

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:

1. Install tapping sleeve and tapping valve according to MSS SP-60.
2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Comply with NFPA 24 for fire-service-main piping materials and installation.

E. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.

1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

F. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:

1. Under Driveways: With at least 36 inches cover over top.

G. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

H. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.

1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

I. Sleeves are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

J. Mechanical sleeve seals are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

K. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

L. See Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.
3.6 INSTALLATION OF HANGERS AND SUPPORTS

A. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

B. Install hangers for copper tubing with maximum spacing and minimum rod diameters to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

C. Support horizontal piping within 12 inches of each fitting and coupling.

D. Support vertical runs of copper tubing to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 JOINT CONSTRUCTION

A. See Section 330500 "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:

2. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-iron-piping couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
3. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for NPS 4 and Larger: Use dielectric flange kits.

3.8 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
3. Bolted flanged joints.
4. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.9 VALVE INSTALLATION

A. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

B. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

C. MSS Valves: Install as component of connected piping system.

3.10 WATER METER INSTALLATION

A. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 BACKFLOW PREVENTER INSTALLATION

A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.

B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.

C. Do not install bypass piping around backflow preventers.

D. Support NPS 4 and larger backflow preventers, valves, and piping off floor and on pipe stations attached to backflow preventer flange bolts.

3.12 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

B. Install protective pipe bollards on three sides of each fire department connection. Pipe bollards are specified in Section 055000 "Metal Fabrications."

3.13 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.
1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.

2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.

C. Locking and Sealing: Secure unsupervised valves as follows:
 2. Post Indicators: Install padlock on wrench on indicator post.

D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.

E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.

F. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems" and Section 284621.13 "Conventional Fire-Alarm Systems."

3.14 CONNECTIONS

A. See Section 330500 "Common Work Results for Utilities" for piping connections to valves and equipment.

B. Connect fire-distribution piping to interior fire-suppression piping.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.15 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 1. Increase pressure in 50-psig (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.
3.16 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 330500 "Common Work Results for Utilities" for identifying devices.

3.17 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.

 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 221113
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 2. Encasement for piping.
B. Related Requirements:
 1. Section 221113 "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Flanges:
 2. Factory-fabricated, bolted, companion-flange assembly.
 3. Pressure Rating: 125 psig minimum at 180 deg F.
 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

C. Dielectric-Flange Insulating Kits:
 1. Nonconducting materials for field assembly of companion flanges.
 3. Gasket: Neoprene or phenolic.
 4. Bolt Sleeves: Phenolic or polyethylene.
5. Washers: Phenolic with steel backing washers.

D. Dielectric Nipples:

2. Electroplated steel nipple complying with ASTM F 1545.
3. Pressure Rating and Temperature: 300 psig at 225 deg F.
4. End Connections: Male threaded or grooved.
5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

D. Install shutoff valve immediately upstream of each dielectric fitting.

E. Install water-pressure-reducing valves downstream from shutoff valves where incoming water street pressure to building exceeds 80 psi at the lower level of the building. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

F. Install domestic water piping level without pitch and plumb.

G. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

H. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

L. Install piping to permit valve servicing.

M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

N. Install piping free of sags and bends.

O. Install fittings for changes in direction and branch connections.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."

R. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

S. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape to external pipe threads. Thread compound or pipe dope is not to be used

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project #: 2018 - 22519
2. **Damaged Threads:** Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. **Soldered Joints for Copper Tubing:** Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. **Joints for Dissimilar-Material Piping:** Make joints using adapters compatible with materials of both piping systems.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. **Dielectric Fittings for NPS 2 and Smaller:** Use dielectric nipples.

C. **Dielectric Fittings for NPS 2-1/2 to NPS 4:** Use dielectric flanges.

D. **Dielectric Fittings for NPS 6 and Larger:** Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. **Vertical Piping:** MSS Type 8 or 42, clamps.
2. **Individual, Straight, Horizontal Piping Runs:**
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

3. **Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer:** MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.

4. **Base of Vertical Piping:** MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. **NPS 3/4:** 60 inches with 3/8-inch rod.
2. **NPS 1 and NPS 1-1/4:** 72 inches with 3/8-inch rod.
3. **NPS 1-1/2 and NPS 2:** 96 inches with 3/8-inch rod.
4. **NPS 2-1/2:** 108 inches with 1/2-inch rod.
5. **NPS 3 to NPS 4:** 10 feet with 1/2-inch rod.

E. Install supports for vertical copper tubing every 10 feet.
F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 1. Piping Inspections:

 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2. Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1. Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2. Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE
A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball valves for piping NPS 2-1/2 and smaller. Use full port two piece bronze bodied ball valves with teflon seat flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball valves for piping NPS 2-1/2 and smaller. Use ball valves with flanged ends for piping NPS 3 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
3. Automatic water shutoff valves.
5. Temperature-actuated, water mixing valves.
7. Drain valves.
8. Water-hammer arresters.
10. Trap-seal primer systems.
11. Specialty valves.
12. Flexible connectors.

B. Related Requirements:

1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Section 221116 "Domestic Water Piping" for water meters.
3. Section 223200 "Domestic Water Filtration Equipment" for water filters in domestic water piping.
4. Section 224716 "Pressure Water Coolers" for water filters for water coolers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1. Include diagrams for power, signal, and control wiring.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 and NSF 14. Mark "NSF-pw" on plastic piping components.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 2. Size: NPS 1/4 to NPS 1-1/2, as required to match connected piping.
 4. Inlet and Outlet Connections: Threaded.
 5. Finish: Chrome plated where exposed.

B. Hose-Connection Vacuum Breakers:
 2. Body: Bronze, nonremovable, with manual drain.
 4. Finish: Chrome or nickel plated.

C. Spill-Resistant Vacuum Breakers:
 2. Operation: Continuous-pressure applications.
 4. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.4 BACKFLOW PREVENTERS

A. All backflow prevention devices shall be by Watts without substitution.
B. Intermediate Atmospheric-Vent Backflow Preventers:
 1. Standard: ASSE 1012.
 2. Operation: Continuous-pressure applications.
 5. End Connections: Union, solder joint.

C. Reduced-Pressure-Principle Backflow Preventers:
 2. Operation: Continuous-pressure applications.
 3. Pressure Loss: 12 psig maximum, through middle third of flow range.
 4. Size: see drawings.
 5. Design Flow Rate: see drawings.
 6. Selected Unit Flow Range Limits: see drawings.
 7. Pressure Loss at Design Flow Rate: see drawings for sizes NPS 2 and smaller; see drawings for NPS 2-1/2 and larger.
 8. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 9. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 10. Configuration: Designed for horizontal, straight-through flow.
 11. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: NRS, Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

D. Double-Check, Backflow-Prevention Assemblies:
 2. Operation: Continuous-pressure applications unless otherwise indicated.
 3. Pressure Loss: 5 psig maximum, through middle third of flow range.
 4. Size: see drawings.
 5. Design Flow Rate: see drawings.
 6. Selected Unit Flow Range Limits: see drawings.
 7. Pressure Loss at Design Flow Rate: see drawings for sizes NPS 2 and smaller; see drawings for NPS 2-1/2 and larger.
 8. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 9. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 10. Configuration: Designed for horizontal or vertical, as applicable, straight-through flow.
 11. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

E. Beverage-Dispensing-Equipment Backflow Preventers:

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
2. Operation: Continuous-pressure applications.
5. End Connections: Threaded.

F. Dual-Check-Valve Backflow Preventers:
2. Operation: Continuous-pressure applications.
3. Size: NPS 1/2, NPS 3/4, NPS 1, NPS 1-1/4 as indicated on drawings.

G. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
2. Operation: Continuous-pressure applications.
5. End Connections: Threaded.

H. Hose-Connection Backflow Preventers:
2. Operation: Up to 10-foot head of water back pressure.
3. Inlet Size: NPS 1/2 or NPS 3/4.
5. Capacity: At least 3-gpm flow.

2.5 WATER CONTROL VALVES

A. Water-Control Valves:
1. Description: Pilot-operated, diaphragm-type, single-seated, main water-control valve.
2. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
3. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 b. Pattern: Angle or Globe-valve design.
 c. Trim: Stainless steel.
4. Design Flow: see drawings.
5. Design Inlet Pressure: see drawings.
6. Design Outlet Pressure Setting: see drawings.
7. End Connections: Flanged for NPS 2-1/2 and larger.

2.6 AUTOMATIC WATER SHUTOFF VALVES

A. Standards: NSF 61 and NSF 372.
B. Water Main Shutoff Valve Actuator: Motor operated, with or without gears, electric and electronic. Capable of closing valve against inlet pressure. Direct mount, two way; fails open/open or closed/closed.
 1. Actuator Torque: 266 in-lbf.
 2. Power Requirements:
 a. Input Voltage: 24 V dc.
 b. Frequency: 60 Hz.
 c. Current: 2 A.
 4. Working Time: 8 seconds.
 5. Torque Limiter: STD.

C. Domestic Water Heater Shutoff Valve Actuator: Motor operated, with or without gears, electric and electronic. Capable of closing valve against inlet pressure. Direct mount, two way; fails open/open or close/close.
 1. Power Requirements:
 a. Input Voltage: 24 V ac.
 b. Frequency: 60 Hz.
 2. Power Supply: 120-V ac to 24-V ac transformer with cord and plug.
 3. Working Time: 45 seconds.
 4. Rotation: 90 degrees.
 7. Working Temperature: 0 to 100 deg F.
 8. Audible Alarm: 83 dB.

D. Actuator Enclosure: Suitable for ambient conditions encountered by application.
 1. NEMA 250, Type 2 for indoor and protected applications.

E. Wireless Leak Detection Receiver System:
 1. Onboard Battery Backup: 48 hours of protection. Valve to close prior to backup failure.
 2. LED Indicators: communication loss, water fault, low temperature fault, and low battery.
 3. Output Contacts: Interface with building automation system, cellular text notification service, or auto dialer accessories as directed by owner preference.
 4. Power Supply: 120 V ac.
 5. Self-monitoring enabled system; faults for lost communication between receiver and sensor(s).

F. Wired Leak Detection System: Local water sensor.
 1. Power Supply: Class II transformer with cord and plug, 120 V ac, UL listed.
a. Power Cord Length: as required, specify in feet when ordering.

2. Control Panel: LED power and LED valves indicator.
3. Alarms: Audible alarm, with external output to BMS and campus security notification.
4. Wired Sensors:
 a. Quantity Per Receiver: as required per device location, refer to plans and details.
 b. Cable Length: as required specify in feet.

G. Accessories:
2. Rope Sensor: Absorbent water sensing rope constructed from twisted metal conductor wires insulated from one another and surrounded by polyethylene mesh braid jacket. Connect up to 100 feet (10 sections) of sensor rope to a single receiver.
3. Electrical Plug Interrupter: Plugs into standard 120-V ac wall outlet.
4. Step-Down Transformer: (water heater supply voltage) ac to 24 V ac with mounting plate, 12-foot plenum wire to power, and 8-foot plenum wire to sensor.
5. Auto Dialer: Send and receive automatic alerts when a fault condition occurs. Standard output contacts trigger up to nine predetermined telephone number calls.
 a. Prerecord message for future playback.
 b. 10-second recordable message.
 c. Built-in tamper switch.
 d. DC adaptor with battery backup.
 e. Programmable as a silent (dialer only) or audible (siren and dialer) alarm.
 f. Easy "Stop Call Sequence" - push "#" on phone to acknowledge the alarm and stop the dialing sequence.
6. Hard-Wired Water Switch: Allows manual override functionality and closes the valve to shut off water flow.

2.7 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
 1. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
 2. Body: Bronze.
 3. Size: Same as connected piping, but not larger than NPS 2.
 4. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.8 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 3. Type: Thermostatically controlled, water mixing valve.
5. Connections: Threaded inlets and outlet.
6. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-
 control handle.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.
9. Valve Finish: Chrome plated where exposed to view.

B. Primary, Thermostatic, Water Mixing Valves:

2. Pressure Rating: 125 psig minimum unless otherwise indicated.
3. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Connections: Threaded or union inlets and outlet.
6. Accessories: Manual temperature control, check stops on hot- and cold-water supplies,
 and adjustable, temperature-control handle.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.
9. Selected Valve Flow Rate at 45-psig Pressure Drop: see drawings.
10. Pressure Drop at Design Flow Rate: 10 psig.
11. Valve Finish: Rough bronze.
12. Piping Finish: Copper.

C. Individual-Fixture, Water Tempering Valves:

1. Standard: ASSE 1070, thermostatically controlled, water tempering valve.
2. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Inlets and Outlet: Threaded.
6. Finish: Rough or chrome-plated bronze.
7. Tempered-Water Setting: see drawings.
8. Tempered-Water Design Flow Rate: see drawings.

2.9 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with
 AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.11 WATER-HAMMER ARREUTERS

A. Water-Hammer Arresters:
 2. Type: Copper tube with piston.
 3. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
 4. Provide access to all water hammer arrestors including access panels where water hammer arrestors are located in chases or behind walls.
 5. Provide a line size, ball type isolation shut off valve on all water hammer arrestors.

2.12 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device: Provide flow through trap priming devices for hub drains below sink which receive only discharge waste from water heater T&P valves and drain pans.
 4. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 5. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Deep seal traps:

 Provide deep seal traps for all floor drains which receive intermittent waste.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
2.13 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:

2. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
3. Cabinet: Surface-mounted steel box with stainless-steel cover.
4. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Number Outlets: as required, see drawings.

2.14 FLEXIBLE CONNECTORS

A. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Install water-control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
C. Install balancing valves in locations where they can easily be adjusted.

D. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet. Provide additional valved and capped outlet on master mixing valves for use during valve set up and calibration.

E. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve and pump.

F. Install water-hammer arresters in water piping according to PDI-WH 201.

G. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain, mop receptors, funnel drain or hub drain below counter sinks.

H. Install supply-type, trap-seal primer valves with outlet piping pitched down toward hub drain below sink a minimum of 1 percent, and discharge to hub drain with air gap. Adjust valve for proper flow.

I. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
10. Automatic water shutoff valves.
11. Calibrated balancing valves.
12. Primary, thermostatic, water mixing valves.
13. Supply-type, trap-seal primer valves.
14. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to
identifying unit. Nameplates and signs are specified in Section 220553 “Identification for Plumbing Piping and Equipment.”

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.
B. Related Sections:
 1. Section 221313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 2. Section 221329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 74, Service classes.
 B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
 C. CISPI, Hubless-Piping Couplings:
 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS
 A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
 C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.
D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 PVC PIPE AND FITTINGS

A. Solid-Wall Schedule 40 PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD’s or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Shielded, Nonpressure Transition Couplings:
b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

4. Pressure Transition Couplings:
 b. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 c. Center-Sleeve Material: Manufacturer's standard.
 d. Gasket Material: Natural or synthetic rubber.
 e. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:
1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
2. Dielectric Unions:
 a. Description:
 2. Pressure Rating: 125 psig minimum at 180 deg F.

3. Dielectric Flanges:
 a. Description:
 2. Factory-fabricated, bolted, companion-flange assembly.
 3. Pressure Rating: 125 psig minimum at 180 deg F.

4. Dielectric-Flange Insulating Kits:
 a. Description:
 1. Nonconducting materials for field assembly of companion flanges.
 3. Gasket: Neoprene or phenolic.
 4. Bolt Sleeves: Phenolic or polyethylene.
 5. Washers: Phenolic with steel backing washers.

5. Dielectric Nipples:
 a. Description:
 1. Standard: IAPMO PS 66
 2. Electroplated steel nipple.
 3. Pressure Rating: 300 psig at 225 deg F.
 4. End Connections: Male threaded or grooved.
5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTH MOVING
 A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 “Earth Moving.”

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping at indicated slopes.
 G. Install piping free of sags and bends.
 H. Install fittings for changes in direction and branch connections.
 I. Install piping to allow application of insulation.
 J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
 K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow for piping NPS 2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
3. Vent Piping: 1 percent downward toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install steel piping according to applicable plumbing code.

O. Install underground PVC piping according to ASTM D 2321.

P. Install force mains at elevations indicated.

Q. Plumbing Specialties:

1. Install backwater valves in sanitary waster gravity-flow piping. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI’s "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Plastic, Non-pressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in OD’s.
2. In Drainage Piping: Shielded, non-pressure transition couplings.
4. In Underground Force Main Piping:
 a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:

1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Section 220523.10 – “General Duty Valves For Plumbing Piping.”

B. Shutoff Valves:

1. Install shutoff valve on each sewage pump discharge.
2. Install gate or full-port ball valve for piping NPS 2 and smaller.
3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
SANITARY WASTE AND VENT PIPING
Section 221316 – Page 8
DCA Permit Set 08-15-2018

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519

D. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.

2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.

3. Vertical Piping: MSS Type 8 or Type 42, clamps.

4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.

6. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.

2. NPS 3: 60 inches with 1/2-inch rod.

3. NPS 4: 60 inches with 5/8-inch rod.

4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.

5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.

6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2: 108 inches with 3/8-inch rod.

2. NPS 2: 10 feet with 3/8-inch rod.

3. NPS 2-1/2: 11 feet with 1/2-inch rod.
4. NPS 3: 12 feet with 1/2-inch rod.
5. NPS 4: 12 feet with 5/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Connect force-main piping to the following:
 1. Sanitary Sewer: To exterior force main.
 2. Sewage Pump: To sewage pump discharge.

E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

F. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
4. Prepare reports for tests and required corrective action.
3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

C. Aboveground, soil and waste piping NPS 6 and larger shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 2. Galvanized-steel pipe, drainage fittings, and threaded joints.
 3. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

F. Underground, soil and waste piping NPS 6 and larger shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.

G. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

H. Aboveground sanitary-sewage force mains NPS 2-1/2 to NPS 4 shall be the following:
1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Through-penetration firestop assemblies.
 5. Flashing materials.

B. Related Requirements:
 1. Section 221423 "Storm Drainage Piping Specialties" for storm drainage piping inside the building, drainage piping specialties, and drains.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

B. HDPE: High-density polyethylene plastic.

C. PE: Polyethylene plastic.

D. PP: Polypropylene plastic.

E. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Floor drains.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000.

B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:
 1. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 2. Size: Same as connected drainage piping
 3. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 4. Closure: Countersunk or raised-head, cast-iron plug.
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:
 2. Standard: ASME A112.36.2M for adjustable housing cast-iron soil pipe with cast-iron ferrule cleanout.
 3. Size: Same as connected branch.
 4. Type: Adjustable housing Cast-iron soil pipe with cast-iron ferrule.
 5. Body or Ferrule: Cast iron.
 6. Clamping Device: As required.
 7. Outlet Connection: Threaded.
8. Closure: Cast-iron plug.
9. Adjustable Housing Material: Cast iron with set-screws or other device.
11. Frame and Cover Shape: Round.
12. Top Loading Classification: Medium Duty.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
15. Size: Same as connected branch.

C. Cast-Iron Wall Cleanouts:
 1. Standard: ASME A112.36.2M. Include wall access.
 2. Size: Same as connected drainage piping.
 3. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:
 2. Pattern: Floor drain.
 3. Trap Features: Trap-seal primer valve drain connection.

B. Stainless-Steel Floor Drains:
 1. ASME A112.3.1, Stainless-Steel Floor Drains:
 2. Standard: ASME A112.3.1.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
 2. Size: Same as connected soil, waste, or vent stack.
 3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 5. Special Coating: Corrosion resistant on interior of fittings.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:
1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch-minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

C. Air-Gap Fittings:
1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:
1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
2. Size: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings:
1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
2. Size: Same as connected stack vent or vent stack.

F. Expansion Joints:
1. Standard: ASME A112.21.2M.
2. Body: Cast iron with bronze sleeve, packing, and gland.
3. End Connections: Matching connected piping.
4. Size: Same as connected soil, waste, or vent piping.

2.5 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

D. Fasteners: Metal compatible with material and substrate being fastened.

E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

F. Solder: ASTM B 32, lead-free alloy.

G. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Assemble open drain fittings and install with top of hub 1 inch above floor.
F. Install deep-seal traps on all floor drains and other waste outlets where indicated.
G. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
H. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
I. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
J. Install wood-blocking reinforcement for wall-mounting-type specialties.
K. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3.6 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
August 15, 2018

New Jersey Department of Community Affairs
Bureau of Construction Project Review
Intake and Admissions
101 South Broad Street, 4th Floor
PO Box 817
Trenton, NJ 08625-0817

Re: Rowan University – Laurel Hall
Project No. 17224

Dear Reviewer,

Please be advised that the HVAC specifications can be found on HVAC drawing H901S.

Sincerely,

Michael J. Wachter, PE, LEED AP BD+C
Profession Engineer License No. GE046988
Executive Vice President - Principal
MJW/va
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd, Glassboro, NJ 08028

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
Table of Contents

Division 2 - Existing Conditions

Section

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>024118</td>
<td>Selective Demolition and Alteration Work</td>
</tr>
</tbody>
</table>

Division 21 - Fire Suppression

- 210517 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
- 210523 GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING
- 210529 HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT
- 210553 IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
- 211119 FIRE DEPARTMENT CONNECTIONS
- 211313 WET PIPE SPRINKLER SYSTEMS
- 211316 DRY-PIPE SPRINKLER SYSTEMS

Division 22 - Plumbing

- 220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
- 220518 ESCUTCHEONS FOR PLUMBING PIPING
- 220519 METERS AND GAGES FOR PLUMBING PIPING
- 220523.10 GENERAL-DUTY VALVES FOR PLUMBING PIPING
- 220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
- 220553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
- 220719 PLUMBING PIPING INSULATION
- 221113 FACILITY WATER DISTRIBUTION PIPING
- 221116 DOMESTIC WATER PIPING
- 221119 DOMESTIC WATER PIPING SPECIALTIES
- 221316 SANITARY WASTE AND VENT PIPING
- 221319 SANITARY WASTE PIPING SPECIALTIES

Division 26 - Electrical

- 260500 COMMON WORK RESULTS FOR ELECTRICAL
- 260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 260533 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
- 260544 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
- 260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 262726 WIRING DEVICES
DIVISION 27 – COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270000</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>270526</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>270528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>271100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>271500</td>
<td>COMMUNICATIONS HORIZONTAL CABLELING</td>
</tr>
</tbody>
</table>

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>DIGITAL ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
SECTION 024118

SELECTIVE DEMOLITION AND ALTERATION WORK

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES

A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:

1. Alteration and removal work as noted on drawings and as required to complete construction.
2. Patching and refinishing of existing surfaces damaged as a result of this work.
3. Protection.

1.3 RELATED SECTIONS

A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS

A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING

A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner’s approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner’s property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
F. Provide adequate fire protection in accordance with local fire department requirements.

G. Do not close or obstruct walkways, passageways, or stairways without the authorization of the Architect. Do not store or place materials in passageways, stairs, or other means of egress. Conduct operations with minimum traffic interference.

H. Be responsible for any damage to the existing structure or contents by reason of the insufficiency of protection provided.

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:

1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.

2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor's workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
DIVISION 26

ELECTRICAL
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

E. Require the contractors to provide coordination drawings that document coordination among all trades.

1.6 TESTS

A. The electrical testing firm shall be required to perform an infrared thermographic inspection of all current carrying equipment and connections per NETA Standards, six months after beneficial occupancy (minimum 75% of available floor space is occupied unless directed otherwise by the University Engineering Department), and provide a report to the Owner. The inspector shall be Level III certified in infrared testing by the American Society of Nondestructive Testing (ASNT).

1.7 DESCRIPTION OF WORK

A. Define the required coordination between University operations, building owners and building occupants, for egress and access restrictions during the construction work, shutdowns, system availability, etc.

B. Define all tie-ins to the University's campus substations and 4160/12470V distribution feeder circuits, including a plan that identifies the sequencing required to get the new work tied in, listing of existing buildings that are affected by outages and/or switching operations, duct banks, manholes, etc.

C. Existing University electrical hard copy site maps and electrical site single line diagrams are to be updated to show all new building electrical tie-ins, as part of the project. Additionally, the composite campus site utility drawing showing chilled water, steam and electric must be updated. These drawings must be updated and submitted to the University prior to energizing electrical service to the building. University will update our CAD archives.

1.8 INSTRUCTING OWNERS PERSONNEL

A. Require the contractor and each equipment manufacturer's technical agent to fully instruct the representatives of the University in all details of operation of the equipment installed under his contract. Training sessions should be scheduled with the appropriate University personnel and require a minimum of two weeks’ notice.

B. Each contractor shall be directed to provide three (3) copies of printed operating and maintenance instructions in separate hardback, three-ring loose-leaf binders and an electronic copy in Adobe or other acceptable format. The instructions shall be prepared by section and contain detail operating and maintenance data including wiring and piping diagrams. Each section shall be labeled and include detailed parts list data and the name, address and phone number of the nearest supply source. The manuals must provide all the information required to run the building and maintain systems and equipment efficiently.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1. The manufacturer's standard specification sheets, if generalized in any way, will be clearly marked to show exactly which item has been supplied, what ratings are applicable, etc., and the job designation for that item will be noted on manufacturer's specification sheet which includes all details for this unit.
2. If there are differences between pieces of equipment, then include a specification sheet for each, properly marked.
3. Include control diagrams, single-line diagrams, interconnection (point to point) wiring diagrams, sequence of operations, and service instructions.
4. Provide one section for preventive maintenance procedures (recommended materials and procedures, frequency, etc.).
5. Include Contractor's phone numbers and any other references required to obtain warranty service.

C. Training shall be conducted by the manufacturer's factory trained personnel who are knowledgeable of the specific project and actual operating conditions and requirements.

D. Operator training shall be conducted before the equipment is placed into energized operation.

E. The manufacturer shall produce a test procedure that covers all modes of operation and demonstrates all interlocks for the equipment provided.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water stop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

 1. Minimum Metal Thickness:

 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.

 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
c. Metraflex Co.
d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.
F. Building Electric metering (208/480V) utilize Siemens Ion metering with Bacnet communication via IP for data gathering at Honeywell EBI Energy Manager.
G. All equipment must be installed on raised concrete housekeeping pads. Pads shall be a minimum of 4 inches high and shall extend a minimum of 4 inches beyond all sides of the equipment. Pads in front of switchgear or motor control centers containing draw-out units shall extend the full required working distance recommended by the manufacturer.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 3 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. Roof penetrations shall be supplied in accordance with the roofing system manufacturer's recommendations

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

N. Access panels in walls and ceilings shall be provided where there are concealed items requiring access. Access panels shall match the fire rating of the wall or ceiling assembly in which they are located

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve
seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 RECORD DRAWINGS

A. The project specifications must define the requirements for the as-built drawings. At a minimum, these drawings must identify locations and size of all major raceway systems (to include conduits 3” and larger, cable tray, etc.); locations of all devices; updated panelboard schedules, equipment locations; substitutions; depth of ductbanks, routing of duct banks. Also record on as-built drawings the dimensioned locations of other piping systems where they cross underground electrical duct banks

B. Provide digital pictures of duct bank crossings with other piping systems and at building entrances, prior to backfilling excavations

C. Require an electronic file of all project specific drawings in a version compatible with current University CAD software

3.6 POWER SYSTEM STUDY

A. Provide an arc flash analysis that covers all electrical or electrified equipment supplied under the project. The arc flash analysis shall present the worst case results obtained by the methodologies of both NFPA 70E and IEEE 1584. The most conservative results from these two methodologies shall be used as the basis for PPE recommendations

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper building wire rated 600 V or less.
2. Metal-clad cable, Type MC, rated 600 V or less.
3. Connectors, splices, and terminations rated 600 V and less.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer's authorized service representative.
B. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member Company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
B. Standards:
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

 1. Insulation Temperature Rating: 90 degrees C.
 2. Insulation Material: Thermoplastic - dual rated THHN/THWN-2 or XHHW-2
 3. Use solid conductor for feeders and branch circuits 12 AWG and smaller; larger conductors shall be stranded.
 4. Use stranded conductors for all control and communication circuits.

D. Conductor Insulation:

 1. Type THHN and Type THWN-2: Comply with UL 83.
 2. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
 3. Type XHHW-2: Comply with UL 44.

E. Acceptable Manufacturers:

 1. Southwire Company
 2. American Insulated Wire Corp
 3. General Cable Corporation
 4. Alcan Products Corporation; Alcan Cable Division
 5. Senator Wire and Cable Company

2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Standards:

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. Comply with UL 1569.
 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Circuits:

D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

E. Ground Conductor: Insulated.

F. Conductor Insulation:
1. Type TFN/THHN/THWN-2: Comply with UL 83.
2. Type XHHW-2: Comply with UL 44.

G. Armor: Steel, interlocked.
H. Jacket: PVC applied over armor.

2.3 CONNECTORS AND SPLICES
 A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

2.4 COLOR CODING
 A. 120/240V, 1 Phase: Black, Red, White, Green.
 B. 120/208V, 3 Phase: Black, Red, Blue, White, and Green.
 C. 277/480V, 3 Phase: Brown, Orange, Yellow, Gray, and Green. This also applies to 277V lighting branch circuits (apply color code to maintain phase identity).
 D. Isolated Ground Conductors: Green with yellow tracer(s).
 E. Medium Voltage, 3 Phase: Identify each phase with the letters A, B and C.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS
 A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
 B. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
 C. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Armored cable, Type AC or Metal-clad cable, Type MC.
D. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground:
Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in
raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Complete raceway installation between conductor and cable termination points according to
Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and
cables.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used
must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended
maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will
not damage cables or raceway.

D. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-
tightening values. If manufacturer's torque values are not indicated, use those specified in
UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that
possess equivalent or better mechanical strength and insulation ratings than unspliced
conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for
Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of
conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply
with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and
Cabling."
3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections with the assistance of a factory-authorized service representative.

1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors for compliance with requirements.
2. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 g. Continuity test on each conductor and cable.
 h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes grounding and bonding systems and equipment.
 B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rings.
 2. Grounding arrangements and connections for separately derived systems.
 B. Qualification Data: For testing agency and testing agencies field supervisor.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 a. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 1) Ground rings.
 2) Grounding arrangements and connections for separately derived systems.
b. Instructions for periodic testing and inspection of grounding features at test wells based on NFPA 70B.

1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Conductor: No. 4 AWG, stranded conductor.
5. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.3 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Conduit Hubs: Mechanical type, terminal with threaded hub.

H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

I. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

J. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

K. Straps: Solid copper, copper lugs. Rated for 600 A.

L. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal one-piece clamp.

M. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

N. Water Pipe Clamps:
 1. Mechanical type, two pieces with zinc-plated bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector.

2.4 GROUNDING ELECTRODES

A. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer’s recommended material.

B. Ground Plates: 1/4 inch thick, hot-dip galvanized.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

C. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

E. Ground Ring: Install a grounding conductor, electrically connected to each building structure steel column, and connected to existing building ground system, extending around the perimeter of building.

1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections with the assistance of a factory-authorized service representative.

B. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

5. Perform ground continuity and functional tests:
 a. Between each main secondary feeder switchboard ground and its termination point (distribution panels, panelboards, motor control centers, UPS systems, electric heater disconnects, chiller starters, and other such equipment) and all feeders shown on single-line diagram.
 b. Between each distribution panel to panelboards and between each panelboard to panelboard (excluding branch circuits).
 c. Test each branch circuit receptacle for proper polarity and ground using a plug-in test device.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohms.
 7. Data Center or other IT installations: Less than 1 ohm.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.

 1. Trapeze hangers. Include product data for components.
 2. Steel slotted-channel systems.
 3. Nonmetallic slotted-channel systems.
 4. Equipment supports.
 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
1. Include design calculations and details of trapeze hangers.
2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which hangers and supports will be attached.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M.
2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
2. Component Importance Factor: 1.5.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.
2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

1. Material: Galvanized steel.
3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
7. Channel Dimensions: Selected for applicable load criteria.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 6. Toggle Bolts: All-steel springhead type.

F. Manufactured Supporting Devices:
 1. Raceway Supports: Clevis hangers, riser clamps, conduit straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring steel clamps.
 2. Powder-Driven Threaded Studs: Powder – Driven devices shall not be used.

G. Supports:
 1. Strength of each support shall be adequate to carry present and future load multiplied by a safety factor of at least four. Where this determination results in a safety allowance of less than 200 lbs., provide additional strength until there is a minimum of 200 lbs. safety allowance in the strength of each support.
 2. Walls of light weight construction (including all stud/drywall type construction) shall be reinforced with surface mounted “unistrut” strut before hanging electrical equipment.
2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS
A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES
A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING
A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
B. Touchup: Comply with requirements in Section 099113 "Exterior Painting", Section 099123 "Interior Painting" and Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Nonmetal conduits, tubing, and fittings.
3. Metal wireways and auxiliary gutters.
4. Nonmetal wireways and auxiliary gutters.
5. Surface raceways.
7. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid steel conduit.
C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Fittings for EMT:
 a. Material: Steel.
 b. Type: Compression.

2. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Screw-cover type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.

2.3 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

E. Metal Floor Boxes:
1. Material: Cast metal or sheet metal.
2. Type: Fully adjustable.
3. Shape: Rectangular.
4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

K. Gangable boxes are allowed.

L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

M. Cabinets:

1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Outdoor Locations, Above Grade: In corrosive environments, use schedule rigid 80 PVC and compatible fittings. In non-corrosive environments, use rigid steel conduit.
2. Underground Conduit: RNC, Type EPC-40-PVC, concrete encased.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFNC.
4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: In corrosive environments, use schedule rigid 80 PVC and compatible fittings. In non-corrosive environments, use rigid steel conduit. All roof conduit penetrations shall use rigid steel conduit.
7. Dry Locations:
 a. Switchboard and panelboard feeders: EMT or RGS.
 b. Feeders or branch circuits 100 amps and larger: EMT.
 c. Circuits operating above 600V: Rigid steel conduit.
 d. Exposed conduit in finished areas: Coordinate with Architect.
 e. Equipment Rooms: Install IMC or RGS conduit in rough-use areas like mechanical and electrical equipment rooms, janitor's closets, etc.
 f. Conduit in Walls: EMT.
 g. Above Ceiling: EMT or MC cable with insulated ground conductor.
 h. Rooftop locations where exposed: RGS
8. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Comply with NEMA FB 2.10.
 a. compression type for sizes 2 1/2 inches and below.
 b. set screws for all conduit sizes above 2 1/2 inches
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

I. Exposed conduit (or other raceways) shall be installed above water and steam piping. Maintain a minimum 12 inches clearance between conduit and all piping systems with fluid temperatures exceeding 104 degree F.

J. Conduit (or other raceways) shall be designed and installed with expansion joints to allow for thermal expansion of conduit system and movement of the building (at expansion joints) and keep stresses within the allowable limits of the conduit. Expansion joints shall be located as per NEC requirements and, as a minimum, at all building expansion joints. Expansion joints shall allow for the required amount of movement in order to prevent buckling of conduit or pullout at fittings.

K. Junction/pull boxes (or suitable conduit fittings) shall be located to facilitate installation of cables and insure that the pulling tension of cables is not exceeded. However, install no more than the equivalent of (3) 90-degree bends between pull boxes or fittings. Junction/pull boxes and conduit fittings shall be located so that the capability for future access is maintained. Junction/pull boxes shall not be located on building expansion joints.

L. Conduit shall be installed so that access to equipment, systems, piping, etc. is not blocked by the conduit.

M. Conduit and support systems shall be designed to meet applicable seismic codes.

N. Lateral installation of conduit on rooftops is not permitted except as required to serve rooftop equipment.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 “Hangers and Supports for Electrical Systems” for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed thread less fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Surface Raceways:
1. Install surface raceway with a minimum 2-inch radius control at bend points.
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires. Maximum of 36 inches of flexible conduits for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to top of box unless otherwise indicated.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a rain tight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

BB. Locate boxes so that cover or plate will not span different building finishes.

CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

EE. Set metal floor boxes level and flush with finished floor surface.

FF. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

B. Related Requirements:
1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E and Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

B. Label Size: As follows
 2. Raceways Larger than 1-inch: 1-1/8 inches high by 8 inches long

C. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
D. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: “DANGER - CONCEALED HIGH VOLTAGE WIRING.”

E. Warning Label Colors:
 1. Identify system voltage with black letters on an orange background.

F. Warning labels and signs shall include, but are not limited to, the following legends:
 1. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
 2. Arc Flash Warning: Refer to detail on Drawings.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Self-Adhesive Wraparound Labels: Preprinted, 3-mil-thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 2. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

C. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and is 12 inches wide. Stop stripes at legends.

D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

E. Underground-Line Warning Tape:

1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 TAGS

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.023 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

C. Write-on Tags:
 1. Polyester Tags: 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.
2.7 SIGNS

A. Baked-Enamel Signs:
 1. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS
A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION
A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION
A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
B. Install identifying devices before installing acoustical ceilings and similar concealment.
C. Verify identity of each item before installing identification products.
D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
E. Apply identification devices to surfaces that require finish after completing finish work.
F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.
H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
1. Secure tight to surface of conductor, cable, or raceway.

J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

K. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

L. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

M. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

N. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

O. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

P. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

Q. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

R. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

S. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

T. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

U. Underground Line Warning Tape:
 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where
width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
2. Limit use of underground-line warning tape to direct-buried cables.
3. Install underground-line warning tape for direct-buried cables and cables in raceways.

V. Metal Tags:
1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

W. Nonmetallic Preprinted Tags:
1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

X. Write-on Tags:
1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

Y. Baked-Enamel Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.

Z. Metal-Backed Butyrate Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

AA. Laminated Acrylic or Melamine Plastic Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

BB. Cable Ties: General purpose, for attaching tags, except as listed below:
1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive labels.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl tape applied in bands.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive vinyl tape to identify the phase.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

J. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

K. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

L. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

M. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
IDENTIFICATION FOR ELECTRICAL SYSTEMS
Section 260553 – Page 10
DCA Permit Set 08-15-2018

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

N. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

O. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

P. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

Q. Arc Flash Warning Labeling: Self-adhesive labels. (for new construction and complete building renovations):

1. Design Professional will provide the preliminary short circuit analysis during design. After start-up and commissioning, the Arc Flash analysis will be completed based on actual equipment installed and final trip settings. Computer generated labels will be printed on self-adhesive water resistant material and field applied by the Engineer of Record.
2. Provide nameplate type markings on all switchgear, switchboards, panelboards, motor control centers, starters, VFDs, transformers, and disconnect switches per NEC Article 110 indicating the following:
 a. Voltage (phase to phase)
 b. Available Short Circuit Current (amperes)
 c. Flash Protection Boundary (inches)
 d. Prohibited Shock Approach Boundary (inches)
 e. Limited Shock Approach Boundary (inches)
 f. Arc Flash Evaluation Study Date
 g. Refer to NFPA 70E for proper safety practices and protective equipment requirements
 h. Equipment labels shall be as follows:

![Warning Label](image-url)
R. Operating Instruction Signs: Self-adhesive labels.

S. Equipment Identification Labels:

1. Indoor Equipment: Self-adhesive label.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:

 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
 e. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 f. Enclosed switches.
 g. Enclosed circuit breakers.
 h. Enclosed controllers.
 i. Variable-speed controllers.
 j. Push-button stations.
 k. Contactors.
 l. Remote-controlled switches, dimmer modules, and control devices.
 m. Monitoring and control equipment.

END OF SECTION 260553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Straight-blade convenience, hospital-grade, isolated-ground, and tamper-resistant receptacles.
2. GFCI receptacles.
3. Twist-locking receptacles.
4. Toggle switches.
5. Digital timer light switches.
6. Wall plates.

1.3 DEFINITIONS

A. Abbreviations of Manufacturers' Names:

B. BAS: Building automation system.

C. EMI: Electromagnetic interference.

D. GFCI: Ground-fault circuit interrupter.

E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

F. RFI: Radio-frequency interference.

G. SPD: Surge protective device.

H. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

D. Receptacles installed for dedicated loads shall be single outlet type (no duplexes) and shall be served by a dedicated branch circuit. Cover plate shall be labeled with the name of the intended load.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour/Legrand (Pass & Seymour).

2.3 GFCI RECEPTACLES

A. General Description:

1. 125 V, 20 A, straight blade feed through and non-feed through type.
2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour/Legrand (Pass & Seymour).

2.4 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour/Legrand (Pass & Seymour).
 2. Grounding: Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.5 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Single Pole:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hubbell Incorporated; Wiring Device-Kellems.
 2) Leviton Manufacturing Co., Inc.
 3) Pass & Seymour/Legrand (Pass & Seymour).
2. Two Pole:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hubbell Incorporated; Wiring Device-Kellems.
 2) Leviton Manufacturing Co., Inc.
 3) Pass & Seymour/Legrand (Pass & Seymour).

3. Three Way:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hubbell Incorporated; Wiring Device-Kellems.
 2) Leviton Manufacturing Co., Inc.
 3) Pass & Seymour/Legrand (Pass & Seymour).

2.6 WALL PLATES

 A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting
 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

 B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.7 FINISHES

 A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System – Standard Convenience Power: White-colored with circuit identification tag as indicated on the contract documents, unless otherwise indicated or required by NFPA 70 or device listing.
 2. Wiring Devices Connected to Standby Generator Power System: Red-colored with circuit identification tag as indicated on the contract documents, unless otherwise indicated or required by NFPA 70 or device listing.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailed that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
TABLE OF CONTENTS

DIVISION 2 - EXISTING CONDITIONS

SECTION

024118 SELECTIVE DEMOLITION AND ALTERATION WORK

DIVISION 21 - FIRE SUPPRESSION

210517 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
210523 GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING
210529 HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT
210553 IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
211119 FIRE DEPARTMENT CONNECTIONS
211313 WET PIPE SPRINKLER SYSTEMS
211316 DRY-PIPE SPRINKLER SYSTEMS

DIVISION 22 - PLUMBING

220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220518 ESCUTCHEONS FOR PLUMBING PIPING
220519 METERS AND GAGES FOR PLUMBING PIPING
220523.10 GENERAL-DUTY VALVES FOR PLUMBING PIPING
220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220719 PLUMBING PIPING INSULATION
221113 FACILITY WATER DISTRIBUTION PIPING
221116 DOMESTIC WATER PIPING
221119 DOMESTIC WATER PIPING SPECIALTIES
221316 SANITARY WASTE AND VENT PIPING
221319 SANITARY WASTE PIPING SPECIALTIES

DIVISION 26 - ELECTRICAL

260500 COMMON WORK RESULTS FOR ELECTRICAL
260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260544 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLEING
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
262726 WIRING DEVICES
DIVISION 27 – COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270000</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>270526</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>270528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>271100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>271500</td>
<td>COMMUNICATIONS HORIZONTAL CABLING</td>
</tr>
</tbody>
</table>

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>DIGITAL ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
SECTION 024118

SELECTIVE DEMOLITION AND ALTERATION WORK

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES

A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:

1. Alteration and removal work as noted on drawings and as required to complete construction.

2. Patching and refinishing of existing surfaces damaged as a result of this work.

3. Protection.

1.3 RELATED SECTIONS

A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS

A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING

A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner's approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner's property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
F. Provide adequate fire protection in accordance with local fire department requirements.

G. Do not close or obstruct walkways, passageways, or stairways without the authorization of the Architect. Do not store or place materials in passageways, stairs, or other means of egress. Conduct operations with minimum traffic interference.

H. Be responsible for any damage to the existing structure or contents by reason of the insufficiency of protection provided.

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:

1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.

2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor’s workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
DIVISION 27

INFORMATION TECHNOLOGY
PART 1 - GENERAL

1.1 SUMMARY

A. This document is to provide general requirements and is intended to supplement the 270000 Communications trade.

1.2 RELATED DOCUMENTS

A. This Section shall be used in conjunction with other specifications and related Contract Documents to establish the total general requirements for the project communications systems and equipment including but not limited to:

1. Contract Documents
2. Information Technology Contract Documents
3. Section 270526 – Grounding and Bonding for Communications Systems
4. Section 270528 – Pathways for Communications Systems
5. Section 271100 – Communications Equipment Room Fittings
6. Section 271500 – Communications Horizontal Cabling

1.3 REFERENCES

A. All work shall be performed in accordance with the following codes and industry standards, unless noted otherwise:

2. NFPA 72 – National Fire Alarm Code
4. International Building Code (IBC)
5. Underwriters Laboratories (UL)
6. Institute for Electrical and Electronics Engineers (IEEE)
7. American National Standards Institute (ANSI)
8. Building Industry Consulting Services International (BICSI)
9. Construction Specifications Institute (CSI)
12. ANSI/TIA-568.0-D, Generic Communications Cabling for Customer Premises, most current version
13. ANSI/TIA-568.1-D, Commercial Building Telecommunications Infrastructure Standard, most current version
14. ANSI/TIA-568-C.2, Balanced Twisted-Pair Telecommunications Cabling and Components Standard, most current version
15. ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standards, most current version
16. ANSI/TIA–569-D, Telecommunications Pathways and Spaces, most current version
17. ANSI/TIA–607-C, Generic Telecommunications Grounding and Bonding (Earthing) for Customer Premises, most current version

1.4 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. BCT: Bonding conductor for telecommunications.
D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
F. EMI: Electromagnetic interference.
G. EMT: Electrical metallic tubing.
H. GRC: Galvanized rigid conduit.
I. IDC: Insulation displacement connector.
J. IMC: Intermediate metal conduit
K. LAN: Local area network.
L. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
M. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
N. RCDD: Registered Communications Distribution Designer.
O. RTRC: Reinforced thermosetting resin conduit
P. TGB: Telecommunications grounding busbar.
Q. TMGB: Telecommunications main grounding busbar.
R. UTP: Unshielded twisted pair.
1.5 ACTION SUBMITTALS

A. Product Data: for each type of products indicated in the design documents
 1. Clearly mark the selected products.
 2. Reference specific Sections for additional information

1.6 INFORMATIONAL SUBMITTALS

A. Reference specific Sections for additional information
B. Manufacturer’s certification information.
C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Reference specific Sections for additional information
B. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
C. Cabling Administration Drawings (As Builds): Show building floor plans with room names, numbers and cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, rack elevations with patch panels, telecom room layouts, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606. Furnish electronic record of all drawings, in software and format selected by Owner.

1.8 QUALITY ASSURANCE

A. Reference specific Sections for additional information
B. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings shall be under the direct supervision of RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
 3. Field Inspector and Testing Supervisor: Currently registered by BICSI as RCDD to perform the on-site inspection.
C. Testing Agency Qualifications: BISCI.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569.

F. Grounding: Comply with ANSI/TIA-607.

G. Contractor shall have a minimum of 10 years' experience with similar installs

1.9 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and protected from the weather and all mechanical work likely to damage cabling has been completed during the remainder of the construction period.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.
 2. Test each pair of UTP cable for open and short circuits.

1.12 WARRANTY

A. The Telecommunications contractor must be an approved manufactures Certified Contractor. The Telecommunications contractor is responsible for workmanship and industry standard installation practices. The certified contractor shall have 30% of their technicians trained on copper & fiber installations and testing by the manufacture; they also shall have at least 1 project manager.

B. Telecommunications contractor shall provide labor, materials and documentation according to manufactures requirements necessary to insure that the Owner will be furnished with a Warranty of 25 years in length.
C. The copper warranty guarantees installed static channel (includes patch cords) performance above the TIA/EIA Standards for the applicable Cat cabling systems. The static channel performance tests shall be performed in the field with an approved manufacturer certification tester in the channel test configuration.

D. Horizontal channel solution is to conform to all requirements of the applicable Category performance.

E. All necessary documentation for warranty registration must be provided to manufacturers will be furnished by the Telecommunications Contractor immediately following 100% testing of all cables. All test results shall be submitted to manufactures in the certification tester’s original software on CD.

F. Telecommunications Contractor shall administer the warranty process with the responsible manufacturer’s representative. The warranty shall be provided directly to the owner from the manufacturer. Telecommunications contractor shall insure that the manufacturer provides the Owner with the appropriate warranty certification within 30 calendar days of the final project completion.

PART 2 - PRODUCTS

2.1 APPROVALS AND SUBSTITUTIONS

A. Products / manufacturers or approved equals in these documents are referenced for the purpose of the basis of design for this project. Substitutions are allowed via approved equals unless otherwise noted.

B. Non-compliant products installed as a part of this Contract shall be removed and replaced and all costs for removal and replacement shall be borne solely by the Contractor(s).

C. All parts shall be underwriters’ laboratories (UL) approved for it’s intended application, shall meet all national, state, and local code requirements for it’s intended application and shall meet or exceed manufacturer’s recommendations.

2.2 LABELING

A. Comply with TIA/EIA-606 and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.3 GROUNDING

A. Comply with requirements in Section 270526 “Grounding and Bonding for Communications Systems” for grounding conductors and connectors.

B. Comply with ANSI / TIA-607.
2.4 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.5 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test cables on reels according to TIA/EIA-568.
C. Factory test UTP cables according to TIA/EIA-568.
D. Factory test fiber optical fiber cables according to TIA-526 and TIA-568.
E. Factory test pre-terminated optical fiber cable assemblies according to TIA-526 and TIA-568.
F. Cable will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used as noted. Conceal pathways and cables except in unfinished spaces.

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."

B. Wiring within Enclosures:

 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 2. Install lacing bars and distribution spools.
 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.2 INSTALLATION OF CABLES

A. Contractor must be a Certified Systems Vendor for manufacturer prior to, during, and through completion of the system installation, and must be able to provide the manufacturer manufacturer's extended warranty.

B. Comply with NECA 1, NECA 301, and NECA/BICSI 568.
C. Before installing cabling, ensure all cable pathways, enclosed raceways and innerduct are completely and thoroughly cleaned:

D. Cable shall be installed in accordance with manufacturer recommendations and best industry practices.

E. Inspect communication pathways installed by others including but not limited to: conduit, wireway, cable trays, and innerduct.

F. Provide protection for exposed cables where subject to damage.

G. Protective bushings shall be used to protect cables or abrasion protection for any cable or wire bundles, which pass through holes or across edges of sheet metal.

H. Fasten cables on vertical runs to cable trays or backboard every 18 inches.

I. Velcro type Cable ties and other cable management clamps shall be no more than hand tightened and shall fit snugly, but not compress, indent, crimp, or otherwise change the physical characteristics of the cable jacket or distort the placement of twisted-pair components. Replace any cable exhibiting stresses due to over tightening of cable management devices.

J. Tie MI cables down every 36 inches where required to provide a 2-hour fire rating and every 72 inches elsewhere.

K. General Requirements for Cabling:

1. Comply with TIA/EIA-568 and BICSI ITSIM
2. Field terminated copper and fiber optic patch cords and jumpers shall not be allowed. All patch cords shall be manufactured by manufacturer.
3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
4. Cables may not be spliced. Secure and support cables not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
5. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
9. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
10. Group connecting hardware for cables into separate logical fields.
11. Cables shall be coiled to house the cable coil without exceeding the manufacturers bend radius. In hollow wall installations where box-eliminators are used, excess wire can be stored in the wall. No more than 12” of UTP and 36” of slack shall be stored; Excess slack shall be loosely coiled and stored in the ceiling above each drop location when there is not enough space present in the outlet box to store slack cable.
12. Cables shall be dressed and terminated in accordance with the recommendations made in the ANSI/TIA/EIA-568 document, manufacturer's recommendations and best industry practices.

L. UTP Cable Installation:
 1. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
 2. Utilize T568B wiring scheme.
 3. Pulling tension on 4-pair UTP cables shall not exceed 25-lbf for a four-pair UTP cable.
 4. Bend radius of the horizontal cable shall not be less than 4 times the outside diameter of the UTP cable. 8 times for FTP cables.
 5. The cable jacket shall be maintained to within one inch of the termination point.
 6. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

M. Optical Fiber Cable Installation:
 1. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

N. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

O. Installation of Cable Routed Exposed under Raised Floors:
 1. Install plenum-rated cable only.
 2. Install cabling after the flooring system has been installed in raised floor areas.
 3. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.

3.3 FIRESTOPPING & SMOKE BARRIERS
A. Seal penetrations through fire and smoke barriers of fire rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Fire stopping or equivalent spec.
B. Comply with requirements in Section 078413 "Penetration Fire stopping" or equivalent spec, TIA/EIA-569 for Fire stopping, BICSI TDMM, "Fire stopping Systems”

3.4 IDENTIFICATION
A. Identify system components, wiring, and cabling complying with TIA/EIA-606. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems" or equivalent spec.
 1. Administration Class: 3
 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
B. Paint and label colors for equipment identification shall comply with TIA/EIA-606 for Class 3 of administration, including optional identification requirements of this standard.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
C. At a min, the outlet labels shall denote the Room number, faceplate ID, and Jack ID. Ex. 101-A-1 for cable number 1 faceplate A in room 101, 101-A-2 for cable number 2 Faceplate A in room 101, and so forth. Coordinate with owner as they may provide specific labeling requirements.

D. For backbone cables, label with a “from” and “to” information including the room numbers.

E. Note all labeling information on the as-built drawings.

F. Cable and Wire Identification:

 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

 2. Each individual wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

 3. Label each terminal strip and screw terminal in each cabinet, rack, or panel.

 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.

 b. Label each unit and field within distribution racks and frames.

 4. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.

 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections

 1. Visually inspect all cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568.

 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

 3. Visually confirm appropriate Category marking of cabling, outlets, cover plates, outlet/connectors, and patch panels.

 4. All equipment testers should be calibrated within a year of testing and/or in accordance with manufacturer’s specifications.

 5. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568 and an approved manufacturer certification tester. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
6. Cables, jacks, connecting blocks, and patch panels shall be in their final position during testing with the building energized.

7. UTP Performance Tests:
 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Equal-level far-end crosstalk (ELFEXT).
 6) Power sum near-end crosstalk (PSNEXT) loss.
 7) Power Sum Alien Near-End Crosstalk (PSANEXT)
 8) Power sum equal-level far-end crosstalk (PSELFEXT).
 9) Power Sum Alien Attenuation-to-Crosstalk Ratio-far-end (PSAACR-F)
 10) Return loss.
 11) Propagation delay.
 12) Delay skew.

 b. For multi-pair backbone cabling:
 1) Test in 4-pair increments as the pairs are configured in links.
 2) For lengths and channels that do not exceed the testing distance limitations, test the appropriate category of cable.
 3) For lengths and channels that do exceed the testing distance limitations, utilize the wire map test.

8. For all shielded cabling, test shield continuity in addition to the required tests.

C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is transferred from the instrument to the computer, saved as text files, and printed and submitted with the following minimum information per cable.

 1. Circuit ID
 2. All information from required tests.
 3. Test result, “Pass” or “Fail”
 4. Date and Time of test
 5. Tested By
 6. Project Name
 7. Nominal Velocity of Propagation (NVP)
 8. Version of software
 9. Last date of test equipment calibration.

 Note: If failed state received, cables to be corrected, retested, and submitted after a PASS is received

D. Remove and replace defective cabling and/or hardware where test results indicate that they do not comply with specified requirements.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.
3.6 DEMONSTRATION

A. Train Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION 270000
SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Grounding conductors.
2. Grounding connectors.
3. Grounding busbars.
4. Grounding labeling.
5. Primary Protection / Lightning Arresters

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.3 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:

1. BCT, TMGB.
2. TGBs.
3. Routing of their bonding conductors.

B. Qualification Data: For installation supervisor, and field inspector.

C. Qualification Data: For testing agency and testing agencies field supervisor.

D. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," or equivalent spec include the following:

 a. Result of the ground-resistance test, measured at the point of BCT connection.
b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

PART 2 - PRODUCTS

2.1 SYSTEM COMPONENTS
 A. Comply with ANSI/TIA-607.

2.2 CONDUCTORS
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Harger Lightning and Grounding.
 2. Panduit Corp.
 3. TE Connectivity Ltd.
 4. Tyco Electronics Corp.
 B. Comply with UL 486A-486B.
 C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 2. Cable Tray Equipment Grounding Wire: No. 6 AWG. (if cable tray contains electrical power conductor, then No. 4 AWG)
 D. Cable Tray Grounding Jumper:
 1. Bonding jumpers as required by cable tray manufacturer.

2.3 CONNECTORS
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Burndy; Part of Hubbell Electrical Systems.
 2. Chatsworth Products, Inc.
 3. Harger Lightning and Grounding.
 4. Panduit Corp.
 5. Tyco Electronics Corp.
 6. TE Connectivity Ltd.
 7. Pentair Hoffman
 8. Thomas & Betts
B. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
 1. Electroplated tinned copper, C and H shaped.

D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

E. Busbar Connectors: compression -type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.

F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. Chatsworth Products, Inc.
 2. Hager Lightning and Grounding.
 3. Panduit Corp.
 4. Ortronics
 5. Pentair Hoffman
 6. Lyncole a VFC company

B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches to 16 inches in cross section, length as required. The busbar shall be NRTL listed for use as TMGB and shall comply with ANSI/TIA 607.

 1. Predrilling shall be with holes for use with lugs specified in this Section.
 2. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

C. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches to 10 inches in cross section, length as required. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with ANSI/TIA-607.

 1. Predrilling shall be with holes for use with lugs specified in this Section.
 2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
2.5 LABELING

A. Comply with TIA/EIA-606 and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.6 PRIMARY PROTECTORS / LIGHTNING ARRESTER

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. L-com.
2. TW Linx.
4. Surge Suppression Incorporated
5. JMV LPS Limited
6. Ditek
7. Circa Telecom
8. Nitek

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

B. Inspect the test results of the ac grounding system measured at the point of BCT connection.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1, ANSI/TIA -607, and NECA/BICSI-607

C. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
3.3 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 “Grounding and Bonding for Communications Systems.”

B. Cable trays with communications cable shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Cable trays with control conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.4 APPLICATION

A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG or as indicated on electrical detail drawings.
2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6AWG or as indicated on electrical detail drawings.

B. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Connections to Structural Steel: Welded connectors.

C. Conductor Support:

1. Secure grounding and bonding conductors at intervals of not less than 36 inches.

D. Grounding and Bonding Conductors:

1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
2. Install without splices.
3. Support at not more than 36-inch intervals.
4. Install grounding and bonding conductors in 3/4-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.

a. If grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
Section 270526 – Page 6
DCA Permit Set 08-15-2018

requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.5 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 1/0 AWG for a length up to 52 feet, for length longer use 3/0 AWG, or as indicated on electrical detail drawings.

3.6 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 60 inches above finished floor unless otherwise indicated.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

3.7 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer’s written instructions and as follows:

1. Use crimping tool and the die specific to the connector.
2. Pre-twist the conductor.
3. Apply an antioxidant compound to all bolted and compression connections.

D. All copper cabling entering building:

1. Utilize Primary Protector / Lightning Arresters: Bond to a separate grounding system with insulated bonding conductor.
 a. Do not bond the telecommunications grounding and bonding system.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.

F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack
grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB using a minimum No. 2 AWG bonding conductors.

G. Structural Steel: If not part of the building lightning protection system and where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.

H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.

I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA/EIA-568 when grounding screened, balanced, twisted-pair cables.

J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

K. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. 6 AWG bonding conductors.
 1. Install the conductors in grid pattern on 6-foot centers, allowing bonding of one pedestal from each access floor tile.
 2. Bond the TGB of the equipment room to the reference grid at two or more locations.
 3. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.

3.8 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.
 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.
 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

2. Test the bonding connections of the system using an AC earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.

a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.

3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.

a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable AC current level is 1 A.

4. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

5. Check for improperly sized or installed cable tray bonding jumpers

D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 270526
SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Ladder Rack, Cable Tray and Auxiliary Pathways.
 5. Boxes and enclosures.

B. Related Requirements:
 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior duct banks, manholes, and underground utility construction or equivalent spec.
 2. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wire ways, surface raceways, boxes, enclosures, cabinets, hand holes, and faceplate adapters serving electrical systems or equivalent spec.

1.2 ACTION SUBMITTALS

A. Product data for the following:
 1. Ladder rack, cable tray, auxiliary pathways and fittings.
 2. Boxes, floor boxes, and hinged-cover enclosures.

B. Shop Drawings
 1. For custom enclosures and custom underground hand holes and boxes. Include plans, elevations, sections, and attachment details.
 2. For backbone pathway. Includes plans, elevations, section, and attachment details.
 3. Major Pathways
 4. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of pathway groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
3. Underground ducts, piping, and structures in location of underground enclosures and hand holes.

B. Qualification Data: For professional engineer.

C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Allied Tube & Conduit.
2. Alpha Wire Company.
3. Anamet Electrical, Inc.
5. Thomas & Betts Corporation.

B. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with ANSI/TIA-569.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. PVC-Coated Steel Conduit: PVC-coated

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch (1 mm), minimum.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
2. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Setscrew or compression.

3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.

4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Allied Tube & Conduit.
2. Arnco Corporation.
3. CANTEX Inc.
5. Kraloy.

B. General Requirements for Nonmetallic Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569.

C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. Rigid HDPE: Comply with UL 651A.

E. Continuous HDPE: Comply with UL 651B.

F. RTRC: Comply with UL 1684A and NEMA TC 14.

G. Fittings RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

H. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

I. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.3 LADDER RACK, CABLE TRAY AND AUXILIARY PATHWAYS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.
2. Hoffman
4. Schneider Electric
5. Snake Tray
6. Hilti
7. STI Inc. (EZ Path)
8. Legrand

B. Description: metal.

C. Comply with TIA-569.

D. Fittings and Accessories: Include covers, couplings, offsets, turns, tees, crosses, elbows, expansion joints, adapters, hold-down straps, and other fittings and adapters to match and mate with ladder rack, cable tray, and auxiliary pathways as required for complete system.

E. Cable tray supports and connectors, including bonding jumpers, as recommended by ladder rack & cable tray manufacturer.

F. Finish: Manufacturer's standard enamel finish.

G. Ladder Rack Description:

1. Two I-beam side rails with transverse rungs welded to side rails.
2. No portion of the rungs shall protrude below the bottom plane of side rails.

H. Cable Trays

1. Wire Basket Description:
 a. Wires are formed into a standard 2-by-4-inch wire mesh pattern with intersecting wires welded together. Mesh sections must have at least one bottom longitudinal wire along entire length of section
 b. Wire ends along wire-basket sides (flanges) rounded during manufacturing to maintain integrity of cables and installer safety.

2. Single Rail Cable Tray Description
 a. Center rail with extruded-aluminum rungs arranged symmetrically about the center rail
 b. Maintain cable tray rungs within six degrees of horizontal under all loading conditions
 c. Protect cables from edges of center rail and do not intrude into cable fill area
3. Cable Trough Description
 a. Two longitudinal members (side rails) with a solid sheet over rungs exposed on the interior of the trough, or corrugated sheet with both edges welded to the side rails.

2.4 HOOKS
 A. Description: Prefabricated sheet metal and/or fabric cable supports for telecommunications cable.
 B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Mono-Systems, Inc.
 2. Panduit Corp.
 3. Wiremold / Legrand
 4. Snake tray
 5. Erico Caddy.
 C. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 D. Comply with TIA-569.
 E. Steel and/or Fabric.
 F. J or U shape.

2.5 BOXES AND ENCLOSURES
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper Technologies Company; Cooper Crouse-Hinds.
 2. Hoffman.
 3. Lamson & Sessions; Carlon Electrical Products.
 5. O-Z/Gedney.
 7. RACO; Hubbell.
 8. Thomas & Betts Corporation.
 9. Wiremold / Legrand.
 B. General Requirements for Boxes and Enclosures:
 1. Comply with TIA-569.
 2. Boxes and enclosures installed in wet locations shall be listed for use in wet locations.
 3. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
 4. Device Box Dimensions: minimum of 4 inches square by 2-1/8 inches deep.
5. Gangable boxes are prohibited.

C. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Metal Floor Boxes / Poke Through:
 1. Reference electrical documents.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC, IMC, RNC, Type EPC-40-PVC, RNC or Type EPC-80-PVC.
 2. Concealed Conduit, Aboveground: GRC, IMC, or RNC, Type EPC-40-PVC.
 3. Underground Conduit: RNC, Type EPC-40-PVC or Type EPC-80-PVC, direct buried or concrete encased as directed on detail drawings.
 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT or RNC.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Pathway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Gymnasiums
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT RNC, Type EPC-40-PVC or inner duct.
 5. Damp or Wet Locations: GRC or IMC.
 6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical-fiber-cable pathway or EMT.
 7. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: Riser-type, optical-fiber-cable pathway.
 8. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: General-use, optical-fiber-cable pathway.
 9. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: 3/4-inch trade size. Minimum size for optical-fiber cables is 1 inch.

D. Pathway Fittings: Compatible with pathways and suitable for use and location.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealants recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
F. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Section 271100 "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.

B. Comply with NECA 1, NECA/BICSI 568, and TIA-569 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 101 for steel conduits, NECA 102 for aluminum pathways, NECA 105 for metal cable tray systems, NECA 111 for nonmetallic cable tray systems. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

C. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

D. Complete pathway installation before starting conductor installation.

E. The cable system and support hardware shall be installed so that it does not obscure any valves, fire alarm conduit, boxes, or other control devices.

F. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.

H. Support conduit runs within 12 inches of changes in direction. Utilize long radius ells.

I. Support conduit within 12 inches of enclosures to which attached.

J. Comply with TIA/EIA-569 for pull box sizing and length of conduit and number of bends between pull points.

K. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated.

L. Pathways Embedded in Slabs:

 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
3. Arrange pathways to keep a minimum 2 inches of concrete cover in all directions.
4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
5. Change from ENT to RNC, Type EPC-40-PVC, GRC or IMC before rising above floor.

M. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for pathways.
 2. Deburr and use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

P. Terminate threaded conduits into threaded hubs or with locknuts hand tight plus 1/4 turn more on inside and outside of boxes or enclosure. Deburr and install insulated bushings on conduits terminated with locknuts.

Q. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

R. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

S. Install pull cords in all conduits including empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Secure pull wire, so it cannot fall into conduit. Cap above grade, the pathways designated as spare alongside pathways in use.

T. Surface Pathways:
 1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.
 2. Install surface pathway with a minimum 2-inch radius control at bend points.
 3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

U. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

V. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service pathway enters a building or structure.
3. Where otherwise required by NFPA 70.

W. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

X. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where pathway cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

Y. Hooks:

1. Shall utilize dedicated support assembly. Do not use ceiling grid support wire or support rods.
2. Hook spacing shall allow no more than 6 inches of slack. The lowest point of the cables shall be no less than 6 inches adjacent to ceilings, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment unless no other alternate is available.

Z. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a rain tight connection between box and cover plate or supported equipment and box.

BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

EE. Set metal floor boxes level and flush with finished floor surface.

FF. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

GG. Pathway Installation in Communications Equipment Rooms:

1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
2. Install cable trays to route cables if conduits cannot be located in these positions.
3. Secure conduits to backboard when entering room from overhead.
4. Extend conduits 3 inches above finished floor.
5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

HH. Ladder Rack & Cable Tray

1. Install cable trays according to NEMA VE 2 and TIA/EIA-569.
2. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
3. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
4. Remove burrs and sharp edges from cable trays.
5. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.
6. Fasten cable tray supports to building structure.
7. Place supports so that spans do not exceed maximum spans per manufacturer's recommendations. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.
8. Construct supports from channel members, threaded rods, and other appurtenances furnished by manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
9. Support assembly to prevent twisting from eccentric loading.
10. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.
11. Locate and install supports according to NEMA VE 2 or manufactures recommendations, whichever is more stringent. Do not install more than one cable tray splice between supports.
12. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.
13. Make changes in direction and elevation using manufacturer's recommended fittings.
14. Make cable tray connections using manufacturer's recommended fittings.
15. Install cable trays with enough workspace to permit access for installing cables.
II. Ladder Rack & Cable Tray Grounding

1. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

2. Cable trays with communications cable shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

3. Cable trays with control conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

4. When using epoxy or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

5. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, and “Size of Equipment Grounding Conductors.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install type and number of sealing elements recommended by manufacturer or Architect for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

B. Install sleeves and sleeve seals at penetrations of exterior floor, wall assemblies and slabs-on-grade at pathway entries into building.

C. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

D. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

E. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

F. Install sleeve-seal fittings in new walls and slabs as they are constructed.

G. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

H. Secure nailing flanges to concrete forms.

I. Using grout, seal the space around outside of sleeve-seal fittings.
3.4 PROTECTION

A. Protect coatings, finishes, and enclosures from damage or deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

B. Protect installed open pathways and cabling
 1. Install temporary protection for cables in open pathways to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.

END OF SECTION 270528
SECTION 271100 - COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backboards.
 2. Telecommunications equipment racks and cabinets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.3 INFORMATIONAL SUBMITTALS

PART 2 - PRODUCTS

2.1 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Section 061000 "Rough Carpentry" or equivalent spec

2.2 EQUIPMENT FRAMES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Hubbell
2. Belden
3. Chatsworth
4. Ortronics, Inc.
5. Middle Atlantic Products
6. Panduit

B. Communication Racks

1. The top plate, when installed, shall maintain column spacing, and provide a surface for mounting cable tray.
2. Tapped holes in the columns for mounting of panels shall be #12-24 thread size. Finish shall not interfere with thread fit.
3. Floor-Mounted Racks: Modular-type, steel construction.
 a. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip mounted to back of rack.
 b. Baked-polyester powder coat finish.

C. Cable Management for Equipment Frames:

1. Metal, with integral wire retaining fingers.
2. Baked-polyester powder coat finish.
3. Vertical cable management panels shall have front and rear channels, with covers.
4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground or buried pathways.

3.2 INSTALLATION

A. Reference section 270000 Communications
B. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Reference section 270528 Pathways for Communications Systems
3.4 GROUNDING
 A. Reference section 270526 Grounding and Bonding for Communications Systems

3.5 IDENTIFICATION
 A. Comply with requirements in Section 099123 "Interior Painting" or equivalent spec for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

END OF SECTION 271100
SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLE DESCRIPTION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. Cable connecting hardware, patch panels, and cross-connects.
 3. Telecommunications outlet/connector.

1.2 HORIZONTAL CABLE DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.
 1. Bridged taps and splices shall not be installed in the horizontal cabling.
 2. Splitters shall not be installed as part of the optical fiber cabling.

B. A work area is approximately 100 sq. ft., and includes the components that extend from the telecommunications outlet/connector to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include allowance for the length of 16 feet (4.9 m) to the workstation equipment or in the horizontal cross-connect.

1.3 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568 when tested according to test procedures of this standard.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. Cabling administration drawings and printouts.
3. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.5 INFORMATIONAL SUBMITTALS
A. Source quality-control reports.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Patch cords: 10% additional for each size, color, and Category used in patching.

PART 2 - PRODUCTS

2.1 UTP CABLE
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 1. Siemon 9C6P4A505AR1ARU
 2. Comply with ICEA S-90-661 for mechanical properties.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.

2.2 UTP CABLE HARDWARE
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
1. Siemon

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category.

C. Patch Panel: 48 port 2RU Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 1. Number of Jacks per Field: One for each four-pair UTP cable indicated
 2. For use with snap-in jacks accommodating any combination of UTP cable and associated jack
 3. Jack to match category of cabling

D. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals
 1. Each jack must be stamped or have icons to identify it as the applicable category.
 2. Color to be coordinated with building finishes.
 3. Match category of cabling
 4. Color to match cabling color

E. Patch Cords: Factory-made, four-pair cables in; terminated with eight-position modular plug at each end.
 1. Match category of cabling
 2. Coordinate lengths with owner
 3. one patch cord per outlet jack, coordinate with owner
 4. one patch cord per patch panel jack, coordinate with owner
 5. Color to match jack color
 6. Plenum rated as required.
 7. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.

2.3 TELECOMMUNICATIONS OUTLET

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Siemon

B. Workstation Outlets: One to six-connector assemblies mounted in single faceplate. Seven to twelve connector assemblies mounted in a two-gang faceplate.
 1. Utilize manufactures recommended faceplates for floor boxes, surface pathways, and systems furniture
 2. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices" or equivalent spec.
 3. For use with snap-in jacks accommodating any combination of UTP work area cabling and associated jacks.
a. Flush mounting jacks, positioning the cord at a 45-degree angle.

4. Legend: Machine printed, in the field, using adhesive-tape label.

C. Wall Phone Outlets: One-connector assembly mounted in single faceplate with mounting studs for wall mount phone.

2. Legend: Machine printed, in the field, using adhesive-tape label.

D. Surface mounted outlet:

1. Plenum rated.
2. Legend: Machine printed, in the field, using adhesive tape label.

2.4 Reference Section 270000 Communications

2.5 Reference section 270526 Grounding and Bonding for Communications Systems

PART 3 - EXECUTION

3.1 Reference Section 270000 Communications

3.2 Reference section 270526 Grounding and Bonding for Communications Systems

END OF SECTION 271500
LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
DCA Permit Set
Issued on 08-15-2018
KSS Project #2018 - 22519

LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

Architect
KSS Architects
337 Witherspoon Street
Princeton, NJ 08540
t 609.921.1131
f 609.921.9414
LAUREL HALL
SWING SPACE
BUNCE CIF
Rowan University
201 Mullica Hill Rd,
Glassboro, NJ 08028

MEP Engineers
The Rockbrook Group
20 South Middlesex Avenue
Monroe Township, NJ 08831
t 732-438-1600
TABLE OF CONTENTS

DIVISION 2 - EXISTING CONDITIONS

SECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>024118</td>
<td>SELECTIVE DEMOLITION AND ALTERATION WORK</td>
</tr>
</tbody>
</table>

DIVISION 21 - FIRE SUPPRESSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210517</td>
<td>SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>210523</td>
<td>GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING</td>
</tr>
<tr>
<td>210529</td>
<td>HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND</td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>210553</td>
<td>IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND</td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>211119</td>
<td>FIRE DEPARTMENT CONNECTIONS</td>
</tr>
<tr>
<td>211313</td>
<td>WET PIPE SPRINKLER SYSTEMS</td>
</tr>
<tr>
<td>211316</td>
<td>DRY-PIPE SPRINKLER SYSTEMS</td>
</tr>
</tbody>
</table>

DIVISION 22 - PLUMBING

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220517</td>
<td>SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220518</td>
<td>ESCUTCHEONS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523.10</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND</td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220719</td>
<td>PLUMBING PIPING INSULATION</td>
</tr>
<tr>
<td>221113</td>
<td>FACILITY WATER DISTRIBUTION PIPING</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WASTE AND VENT PIPING</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
</tbody>
</table>

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
</tr>
<tr>
<td>260519</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
</tr>
<tr>
<td>260526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260529</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260533</td>
<td>RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260544</td>
<td>SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS</td>
</tr>
<tr>
<td></td>
<td>AND CABLEING</td>
</tr>
<tr>
<td>260553</td>
<td>IDENTIFICATION FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>262726</td>
<td>WIRING DEVICES</td>
</tr>
</tbody>
</table>

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
<table>
<thead>
<tr>
<th>Division</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270000</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>270526</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>270528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>271100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>271500</td>
<td>COMMUNICATIONS HORIZONTAL CABLING</td>
</tr>
<tr>
<td>283111</td>
<td>DIGITAL ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
SECTION 024118

SELECTIVE DEMOLITION AND ALTERATION WORK

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

 A. Work of this section, as shown or specified, shall be in accordance with the requirements of the contract documents.

1.2 SECTION INCLUDES

 A. Work of this section includes all labor, materials, equipment, and services necessary to complete the alteration work as shown on the drawings and/or specified herein, including, but not limited to, the following:

 1. Alteration and removal work as noted on drawings and as required to complete construction.

 2. Patching and refinishing of existing surfaces damaged as a result of this work.

 3. Protection.

1.3 RELATED SECTIONS

 A. Alteration and removal requirements for mechanical and electrical work - mechanical and electrical sections.

1.4 STANDARDS

 A. Except as modified by governing codes and by this specification, comply with the applicable provisions and recommendations of ANSI 10.6 safety requirements for demolition work.

1.5 SCHEDULING

 A. Before commencing any alteration or demolition work, submit for review by the architect and approval of the Owner, a schedule showing the commencement, the order, and the completion dates for the various parts of this work.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
B. Before starting any work relating to existing utilities (electrical, sewer, water, heat, gas, fire lines, etc.) that will temporarily discontinue or disrupt service to the existing building, notify the Architect and the Owner seventy two (72) hours in advance and obtain the Owner's approval in writing before proceeding with this phase of the work.

PART 2 PRODUCTS

2.1 GENERAL

A. Unless otherwise noted materials for use in repair of existing surfaces, but not otherwise specified, shall conform to the highest standards of the trade involved, and be in accordance with approved industry standards, and shall be as required to match existing surfaces.

B. Materials or items demolished shall become the property of the Contractor, and shall be removed from the Owner's property.

PART 3 EXECUTION

3.1 PROTECTION

A. Make such explorations and probes as are necessary to ascertain any required protective measures before proceeding with demolition and removal.

1. Do all shoring and bracing necessary to prevent any damage to the existing facility.

B. Provide, erect, and maintain catch platforms, lights, barriers, warning signs, and other items as required for proper protection of the workmen engaged in operations, occupants of the building, and adjacent construction.

C. Provide and maintain temporary protection of the existing structure designated to remain where demolition, removal, and new work are being done, connections made, materials handled, or equipment moved.

D. Provide and maintain weather protection at exterior openings so as to fully protect the interior premises against damage from the elements until such openings are closed by new construction.

E. Take necessary precautions to prevent dust and dirt from rising by wetting demolished masonry, concrete, plaster, and similar debris. Protect unaltered portions of the existing building affected by the operations under this section by dustproof partitions and other adequate means.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
Selective Demolition and Alteration Work

Section 024118 – Page 3

DCA Permit Set 08-15-2018

F. Provide adequate fire protection in accordance with local fire department requirements.

G. Do not close or obstruct walkways, passageways, or stairways without the authorization of the Architect. Do not store or place materials in passageways, stairs, or other means of egress. Conduct operations with minimum traffic interference.

H. Be responsible for any damage to the existing structure or contents by reason of the insufficiency of protection provided.

3.2 WORKMANSHIP

A. Cut, remove, alter, temporarily remove and replace, or relocate existing work as required for performance of the work. Perform such work required with due care, including shoring and bracing.

B. Coordinate patching involving the various trades whether or not specifically mentioned in the respective specification sections.

C. Restore finished surfaces remaining in place but damaged or defaced because of demolition or alteration work to condition equal to that which existed at the beginning of work under this contract.

D. Where alteration or removals expose damaged or unfinished surfaces or materials, refinish such surfaces or materials, or remove them and provide new or salvaged materials to make continuous surfaces uniform.

E. Perform new work and restore and refinish existing work in conformance with applicable requirements of the specifications, except as follows:

 1. Workmanship for repair of existing materials shall, unless otherwise specified, be equal to workmanship existing in or adjacent to the space where the work is being done.

 2. Reinstallation of salvaged items where no similar items exist shall be performed in accordance with the highest standards of the trade involved and in accordance with approved Shop Drawings.

F. Materials or items designated to become the property of the owner shall be as noted on the drawings. Remove such items with care and store them in a location at the site as designated by the Owner.

G. Execute the work in a careful and orderly manner, with the least possible disturbance to the occupants of the building.

H. Material to be removed by existing elevators shall be put in enclosed containers.

Laurel Hall Swing Space (Bunce CIF)

Rowan University

KSS Project # 2018 - 22519
I. Cut out embedded anchorage and attachment items as required to properly provide for patching and repair of the respective finishes.

J. Confine cutting of existing roof areas designated to remain to the limits required for the proper installation of the new work. Cut and fold back existing built-up roofing. Cut and remove insulation and related items. Provide temporary weathertight protection as required until new roofing and flashings are installed. Consult the Owner to ascertain if existing guarantee bonds are in force, and execute the work so as not to invalidate such bonds.

K. Where utilities are removed, relocated or abandoned, cap, valve, plug, or by-pass to make complete and working installation.

L. Properly close and patch holes and openings in existing floor, wall, and ceiling surfaces resulting from alteration work, and those shown to be filled. Match existing surfaces.

M. Restore existing pipe and duct coverings damaged by work under this contract to original undamaged condition.

N. Immediately restore to service and repair any damage caused by the Contractor's workmen to existing pipe and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems which are not scheduled for discontinuance or abandonment.

O. Upon completion of contract, deliver work complete and undamaged. Damage that may be caused by the Contractor or the Contractor's workmen to existing structures, grounds, and utilities shall be repaired by the Contractor and left in as good condition as existed prior to damaging.

P. The existing building shall not be used as a workshop, nor shall the furnishings or equipment in any room be used as work benches. Should any damage occur during the progress of the work to any furniture, fixtures, equipment, or appurtenances therein, such damage shall be repaired, replaced or made good by the Contractor without extra cost to the Owner.

Q. Where removing existing floor finish and base, remove all adhesive and leave floors and walls smooth and flush, ready to receive new finish.

R. Finish new and adjacent existing surfaces as specified for new work. Clean existing surfaces of dirt, grease and loose paint before refinishing.
3.3 CLEANING UP

A. Remove debris as the work progresses. Maintain the premises in a neat and clean condition.

END OF SECTION
DIVISION 28

ELECTRONIC SAFETY AND SECURITY
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM - EXPANSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fire alarm initiating, signaling and control devices, including extender panels, power supplies, detectors, controls, devices, raceway, wiring, etc. to be added to the existing digital, addressable fire alarm system.

B. Modify or replace the existing fire alarm control panel and annunciators as required to accommodate the new work.

C. The Contractor shall make the necessary arrangements with the owner's service agency to supervise the new fire alarm work and make wiring connections and include the service agency's charges for this work in his proposal.

D. The Contractor shall make the necessary arrangements with the owner's service agency to write the modifications and additions into the control panel's operating system as they are put into service and reprogram the modifications and additions into non-volatile memory when the project is completed.

E. Test the existing system in the presence of the Owner's representative prior to commencing any work in the building. Initiate a fire drill with the alarm receiving station disconnected and observe the response of all indicating and annunciating devices.

F. Before starting any work on the project, secure the services of the existing fire alarm system service agency or the fire alarm subcontractor to test the existing initiating device circuits, notification appliance circuits, and signal line circuits for "opens", "shorts" and "grounds" in addition to insulation resistance and to certify that they are suitable for connection to the new FACP. Record and report any unsuitable circuits to the Architect / Engineer for further action. Do not connect any existing wiring or devices to the new system until their operating condition has been confirmed.

G. Maintain the existing fire alarm system operational at all times during construction. Temporarily remove devices from surfaces being demolished. Move devices and wiring out of the way of demolition and construction work and protect from damage. Restore to operational status at the end of each day's activities until work is complete and the existing devices or their replacements can be permanently installed on new surfaces.

H. Notify the fire official prior to disconnection and after restoration of the existing fire alarm system for testing, repairs, alterations or additions. If the fire alarm system will be out of service for more than 4 hours in a 24-period, notify the fire official and provide an approved fire watch.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
1.3 DEFINITIONS
A. FACP: Fire alarm control panel.
B. LED: Light-emitting diode.
C. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

1.4 SYSTEM DESCRIPTION
A. The existing system is a non-coded, addressable system with manual and automatic alarm initiation; multiplexed alarm, trouble and supervisory initiating circuits, and hard-wired notification appliance circuits.
B. The existing system consists of a GE Edwards EST2 control system with annunciators, audible and visible alarm signals, and other peripheral devices.
C. Operation: The actuation of any manual or automatic device shall:
 1. Cause a signal(s) to Central Station and Public Safety via local dialer/communicator

1.5 Layout and Design Considerations
A. In mechanical rooms no smoke detectors shall be installed. Provide only heat detectors and horn strobes.
B. Minimum amount of smoke detectors required by code. Only photoelectric smoke detectors are permitted in occupied areas of buildings.
C. All devices shall be accessible including those located in lobbies or high reach areas. Beam detectors shall be installed in areas where area smoke detectors cannot be easily reached for service and maintenance.
D. Horn strobes must be audible or visible in all parts of building including mechanical rooms, etc. The use of horns should be limited in exit stairwells, especially in high rise buildings where building occupants must remain in the stairwells while exiting during an emergency. Strobes should be considered as an alternate

1.6 SUBMITTALS
A. Wiring diagrams, battery sizing calculations and floor plans shall be developed and signed by a technician having NICET Level 3 Fire Alarm Certification minimum and the proposed fire alarm system manufacturer’s certification, and shall be submitted by the contractor to the state or local building code reviewing agency as well as to the Architect, Engineer and Authority Having Jurisdiction (AHJ). Proof of certification shall be included with the submittal.
B. The installer is responsible for producing detailed system layout and wiring diagrams, as well as calculations for battery capacity, signaling and notification circuit wire sizing and voltage drop. These documents shall be provided in a timely fashion in order to support obtaining the

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
necessary electrical construction permits for Fire Safety release from NJ DCA. All submittals to the State must be signed and sealed by a NJ Professional Engineer.

C. Product Data: For each type of product indicated.

D. Shop Drawings: Show details of graphic annunciator.

E. Wiring Diagrams: Detail wiring and differentiate between manufacturer-installed and field-installed wiring. Include diagrams for equipment and for system with all terminals and interconnections identified. Make all diagrams Project Specific and distinguish between existing and new wiring.

F. Battery: Sizing calculations.

G. Floor Plans: Indicate final outlet locations and routings of raceway connections.

H. Device Address List: Coordinate with final system programming.

I. System Operation Description: Detailed description for this Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.

J. Coordination Drawings: Plans, sections, and elevations drawn to scale and coordinating installation of smoke detectors in ducts and access to them. Show the following near each duct smoke provision of detector installation:

1. Size and location of ducts, including lining.
2. Size and location of piping.
4. Size and location of duct smoke detector, including air-sampling elements.

K. Operating Instructions: For mounting at the FACP.

L. Product Certificates: Signed by manufacturers of system components certifying that products furnished comply with requirements.

M. Installer Certificates: Signed by manufacturer certifying that installers comply with requirements.

N. Field Test Reports: Indicate and interpret test results for compliance with performance requirements. Comply with NFPA 72.

O. Maintenance Data: For fire alarm systems to include in maintenance manuals specified in General Requirements Specifications Sections. Comply with NFPA 72.

P. Submissions to Authorities Having Jurisdiction: In addition to distribution requirements for Submittals specified in General Requirements Specifications Sections Section "Submittals," make an identical submission to authorities having jurisdiction. Include copies of annotated Contract Drawings as needed to depict component locations to facilitate review. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
Q. The following documents shall be submitted to the authority responsible for enforcing the International Building Code for review and approval prior to installation of the fire alarm system.

1. A floor plan.
2. Locations of alarm-initiating and notification appliances.
3. Alarm control and trouble signaling equipment.
4. Annunciation.
5. Power connection.
7. Conductor type and sizes.
8. Voltage drop calculations.
9. Manufacturers, model numbers and listing information for equipment, devices and materials.
10. Details of ceiling height and construction.
11. The interface of fire safety control functions.
12. Certification of compatibility of new components with existing fire alarm control panel.

R. Certificate of Completion: Comply with NFPA 72.

S. NICET and Manufacturer’s Certification: Indicating the names and technical level of achievement awarded to the personnel responsible for the layout and installation of the system.

T. Provide programming manuals and diskette copies in ASCII or RTF format of the software for microprocessor or computer based systems for the Owner’s use in modifying, upgrading or expanding the system.

U. Before receiving final payment and after the system has been tested, inspected, and approved by the Authority Having Jurisdiction, the Authorized System vendor shall turn over a disc copy and hard copy of the approved [program] [changes to the program] for the specific project directly to the Owner. The information shall be complete in all respects and contain all actions, rules, and other information needed to change, alter, or add to the system at a future date by a licensed Factory Certified vendor of the installed system. This information shall not be distributed to anyone not certified by the Manufacturer and proof of Certification shall be presented to the Owner, in writing, before the information is exchanged.

V. The Owner, as well as the system vendor, shall maintain a copy of the latest database. As changes are made, the Owner shall receive the latest database and the vendor of record shall maintain a copy.

W. The disc copy of the program shall be turned over to the Owner in a sealed envelope with the following or similar verbiage:

1. COMPANY NAME acknowledges that all data included on the enveloped disc is 100% complete. Data enclosed contains all software required to provide a 100% functioning system as required by the contract specifications and as tested and approved by the Authority Having Jurisdiction on DATE.

2. The Owner shall not distribute the enclosed software disc to any company or individual not Authorized and Certified by the System Manufacturer. The enclosed software is licensed and protected by copyright of the SYSTEM MANUFACTURER.
1.7 QUALITY ASSURANCE

A. Equipment, materials and system engineering shall be provided by a direct Factory Authorized Systems Distributor. The on site management of the fire alarm portion of the project shall be the responsibility of a Factory Trained and Authorized Engineered Systems Distributor to ensure proper specification adherence, installation, final connection, test, turnover, warranty compliance, and service.

B. Manufacturer Qualifications: A firm experienced in manufacturing systems similar to those indicated for this Project and with a record of successful in-service performance.

C. Source Limitations: Obtain fire alarm system components through one source from a single manufacturer.

D. Compliance with Local Requirements: Comply with applicable building code, local ordinances and regulations, and requirements of authorities having jurisdiction.

E. Comply with NFPA 72.

F. UL Compliance and Labeling: Comply with provisions of UL Standards for Safety pertaining to fire alarm systems and provide products that are UL listed and labeled.

G. Comply with the following:
 1. 268 Smoke Detectors for Fire Protective Signaling Systems.
 2. 268A Smoke Detectors for Duct Application.
 3. 464 Audible Signal Appliances.
 5. 864 Control Units for Fire Protective Signaling Systems.
 7. 1638 Visual Signaling Appliances.
 10. 38 Manually Actuated Signaling Boxes for Use with Fire-Protective Signaling Systems
 13. Americans With Disabilities Act

H. To ensure that the new and existing products of the same or approved equal manufacturer are compatible, the proposed manufacturer shall certify in writing that the new components are cross-listed with and will function properly with the existing system and that they will upgrade or replace any existing components which do not function properly with the new components at no additional cost.

I. Existing systems: All devices to be connected to the fire alarm system signaling and notification circuits shall be UL listed for use with the existing system as installed, and shall bear the “UL” label. Unlisted substitutes will not be accepted.

J. New System: All components items of the fire alarm system shall be UL listed by the fire alarm system manufacturer under the appropriate category by Underwriters Laboratories, Inc. for use with the specified fire alarm system, and shall bear the "UL" label. All control equipment shall be listed under UL as a single control system.
1.8 SEQUENCING AND SCHEDULING

A. Existing Fire Alarm System and Equipment: Do not disturb the existing fire alarm system without properly notifying the Owner and his fire alarm service organization one week in advance. All disconnections, removals and additions to the existing system shall be done under the direct supervision of the Owner's fire alarm service organization. All devices added to the system shall be obtained from the Owner's fire alarm service organization. The Contractor shall allow for the premium cost of these devices and a minimum of two man-days labor charges by the fire alarm service organization in his proposal.

B. Existing Fire Alarm Equipment: Maintain fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire alarm equipment "NOT IN SERVICE" until removed from the building.

C. Equipment Removal: After acceptance of the new fire alarm system, remove existing disconnected fire alarm equipment and restore damaged surfaces.

 1. Package operational fire alarm and detection equipment that has been removed and deliver to Owner.

 2. Remove from site and legally dispose of existing material not designated for other disposition.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of the amount installed, but in no case less than two (2) units or more than ten (10) units.

 2. Lamps for Strobe Units: Quantity equal to 10 percent of the amount installed, but in no case less than two (2) units or more than ten (10) units.

 3. Manual Pull Stations: Quantity equal to 10 percent of the amount installed, but in no case less than one (1) unit or more than ten (10) units.

 4. Area Smoke Detectors, Photoelectric or Ionization Type: Quantity equal to 10 percent of the amount installed, but in no case less than one (1) unit or more than ten (10) units.

 5. Heat Detectors, Combination Type: Quantity equal to 10 percent of the amount installed, but in no case less than one (1) unit or more than ten (10) units.

 6. Detector Bases: Quantity equal to 2 percent of the amount installed, but in no case less than two (2) units or more than ten (10) units.

 7. Combination Audible and Visible Fire Alarm Signals: Quantity equal to 10 percent of amount of each type installed but in no case less than two (2) units or more than ten (10) units.

 8. Visible Fire Alarm Signals: Quantity equal to 10 percent of amount installed but in no case less than two (2) units or more than ten (10) units.

 9. Addressable Interface devices: Quantity equal to 10 percent of amount installed but in no case less than two (2) units or more than ten (10) units

 11. Keys and Tools: One (1) extra set for access to locked or tamper-proofed components.
B. Provide all labor, materials and programming to furnish and install the following additional devices where directed by the Owner, Architect, Engineer or Authority Having Jurisdiction during construction and prior to final acceptance. Include 50 feet of wiring, connection to the addressable loop, and programming. The unused devices shall be turned over to the owner and the owner credited the amount of labor for their installation.

1. Manual Fire Alarm Pull Stations: Quantity equal to 10 percent of amount of each type installed but in no case less than five (5) units or more than ten (10) units.
2. Combination rate-of-rise and fixed 135 degree F. heat detectors: Quantity equal to 10 percent of amount of each type installed but in no case less than five (5) units or more than ten (10) units.
3. Photoelectric Area Smoke Detectors: Quantity equal to 10 percent of amount of each type installed but in no case less than five (5) units or more than ten (10) units.
4. Detector Bases: Quantity equal to 10 percent of the amount installed, but in no case less than five (5) units or more than ten (10) units.
5. Combination Audible and Visible Fire Alarm Signals: Quantity equal to 10 percent of amount of each type installed but in no case less than five (5) units or more than ten (10) units.
6. Visible Fire Alarm Signals: Quantity equal to 10 percent of amount of each type installed but in no case less than five (5) units or more than ten (10) units.
7. Addressable Interface devices: Quantity equal to 10 percent of amount installed but in no case less than five (5) units or more than ten (10) units. Include connection to device being monitored or controlled.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

Available Manufacturers: All system components shall be the standard products of GE Edwards EST systems, or approved equivalent system by the University Engineering Department

A. Base Bld: Subject to compliance with requirements provide a Fire Alarm System and Components as provided by GE Edwards EST and obtained through a factory authorized distributor and as indicated on the Drawings and in the Specifications complete with all wiring, cutting, patching, supports, etc. as specified.

2.2 FUNCTIONAL DESCRIPTION OF EXISTING SYSTEM

A. General: An alarm signal is the highest priority. Supervisory and trouble signals have second and third priority. Higher level priority signals take precedence over signals of lower priority, even when the lower priority signal occurs first.

B. Non-interference: A signal from one zone or device shall not prevent the receipt of signals from other zones or devices.

C. Alarm, supervisory and trouble signals are automatically routed to a remote receiving station by means of a digital alarm communicator and telephone lines.

D. Loss of power at the FACP initiates a trouble signal at the FACP and the remote annunciator.
E. Operation of a manual station, automatic operation of a smoke or heat detector, or operation of a sprinkler workflow device initiated the following:

1. Notification appliance operation.
2. Identification at the FACP and remote annunciator of the zone or device originating the alarm.
3. Transmission of an alarm signal to the remote alarm receiving station.
4. Unlocking of electric door locks in designated egress paths.
5. Release of smoke doors held open by magnetic door holders.
6. Recall of elevators.
7. Shutdown of fans and other air handling equipment serving zone where alarm was initiated.
8. Transmit a signal to a local standalone automatic temperature control panel for fan shutdown.
9. Closing of smoke dampers in air ducts of system serving zone where alarm was initiated.
10. Recording of the event in the system memory.
11. Recording of the event by the system printer.

F. The capacity of the existing fire alarm system will not be diminished below that which exists at the present time.

G. The fire alarm system in portions of the existing building that are not being renovated, altered or remodeled is not required to meet current codes.

2.3 FIRE ALARM CONTROL PANEL

A. The fire alarm control panel shall be GE Edwards EST Series or newer version as determined by the University Engineering Department

B. The FACP shall be of the addressable type and come equipped with features necessary to perform required functions and as specified as follows:

1. Backlit liquid crystal display.
2. Individual system alarm, supervisory, and trouble LED indicators.
3. Alarm Acknowledge Key.
4. Supervisory Acknowledge Key.
5. Trouble Acknowledge Key.
6. Alarm Silence Key.
7. System Reset Key.
8. LED testing.

C. Control Panel shall comply with all the applicable requirements of UL 864. The loss of primary power or the sequence of applying primary or emergency power, shall not affect the transmission of alarm supervisory or trouble signals.

2.4 SYSTEM EXPANSION

A. The initial design of audible and visual notification circuit loading shall be such that all devices receive full power and such that no circuit contains more than 60 percent of the manufacturer’s rated quantity of devices.
B. The initial design of addressable signaling circuits shall be loading such that no addressable circuit or loop contains more than 75 percent of the manufacturer’s rated quantity of devices.

2.5 POWER SUPPLY: POWER REQUIREMENTS

A. Provide sufficient standby battery capacity to operate the entire system upon loss of normal power for a period of 24 hours in a standby mode plus 10 minutes in alarm mode. In addition, provide an additional 20 percent spare standby battery capacity. All battery charging and recharging operations shall be automatic. Batteries shall be brought from fully discharged to fully charged condition within 48 hours.

B. Batteries: Storage batteries shall be sealed (valve-regulated), lead calcium type requiring no additional water.

C. Battery charger shall be completely automated with high/low charging rate. Charger shall be located in FACP.

D. The fire alarm system power supply shall be connected to the building’s emergency (life safety branch) power circuits.

E. Provide a power disconnect safety switch located next to the fire alarm panel(s) that disconnects AC power from the fire alarm panel, as well as each supplementary or other panel that is fed by AC power.

2.6 MANUAL PULL STATIONS

A. Description: Fabricated of metal or plastic, and finished in red with molded, raised-letter operating instructions of contrasting color.

2. Double-action mechanism requires two actions, such as a push and a pull, to initiate an alarm.
3. Station Reset: Key or wrench operated; double pole, double throw; switch rated for the voltage and current at which it operates.
4. Indoor Protective Shield: Factory-fabricated clear plastic enclosure, hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false alarm operation.
5. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure, hinged at the top to permit lifting for access to initiate an alarm.
6. Integral Addressable Module: Arranged to communicate manual-station status (normal, alarm, or trouble) to the FACP.
7. The stations will be red with painted white, raised lettering. The station will mechanically latch upon operation and remain so until manually reset by opening with a key common to all system locks. Pull stations will be double action.
8. Pull stations shall be addressable type.
9. Dormitories: Provide 9V audible sounder cover to deter prank alarms

2.7 SMOKE DETECTORS

A. General: Include the following features:
1. Operating Voltage: 24-V dc, nominal.
2. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
3. Plug-in Arrangement: Detector and associated electronic components are mounted in a module that connects in a tamper-resistant manner to a fixed base with a twist-locking plug connection. Terminals in the fixed base accept building wiring.
4. Integral Visual-Indicating Light: LED type. Indicates detector has operated.
5. Sensitivity: Can be tested and adjusted in-place after installation.
6. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
7. Remote Controllability: Unless otherwise indicated, detectors are analog-addressable type, individually monitored at the FACP for calibration, sensitivity, and alarm condition, and individually adjustable for sensitivity from the FACP.
8. Ceiling mounted smoke detector shall be of the analog addressable photoelectric type with plug-in base and auxiliary relay contacts

B. Photoelectric Smoke Detectors: Include the following features:

1. Sensor: LED or infrared light source with matching silicon-cell receiver.
2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
3. Integral Thermal Detector: Fixed-temperature type with 135 deg F setting.

C. Duct Smoke Detector: Photoelectric Type.

1. Utilizing a light scattering type photoelectric sensor to sense changes in air samples from its surroundings and suitable for direct insertion into ducts up to 36” x 36” with air velocities up to 5000 feet per minute.
2. Provide duct housing assemblies for ducts exceeding 36” x 36”. Provide air sampling inlet tubes and air exhaust tubes. Protect sensing chamber from damage and insects. Support both ends of tubes.
3. Include relay with contacts rated to interrupt fan motor control circuit or smoke damper power circuit.

2.8 OTHER DETECTORS

A. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or rate of rise of temperature that exceeds 15 deg F per minute, unless otherwise indicated.

1. Mounting: Adapter plate for outlet box mounting.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP. Automatic heat detectors shall be of the analog addressable type.

B. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 135 deg F for normal operation or 190 deg F for high temperature operation.

1. Mounting: Adapter plate for outlet box mounting.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP. Automatic heat detectors shall be of the analog addressable type.

C. Continuous Linear Heat-Detector System: Consists of detector cable and control unit.

1. Detector Cable: Comply with UL 521. Rated detection temperature 155 deg F (68 deg C). Listed for "regular" service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short circuit wires at the location of elevated temperature.
2. Control Panel: Two-zone or multizone unit as indicated. Provides same system power supply, supervision, and alarm features as specified for the central FACP.
3. Signals to the Central FACP: Any type of local system trouble is reported to the central FACP as a composite "trouble" signal. Alarms on each detection zone are individually reported to the central FACP as separately identified zones.
4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

D. Flame Detector: Ultraviolet type with solid-state amplifier-switching circuit set for 10-second delay, unless otherwise indicated.

1. Mounting: Adapter plate for outlet box mounting.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

E. Remote Addressable Modules: High temperature, waterproof and explosion proof units may be provided with remotely mounted external addressable interface units.

F. Carbon Monoxide Detector: U. L. Listed to Standard 2075 including the following features:

1. Operating Voltage: 24 vdc supervised power supply from the fire alarm system.
2. Mounting: Surface or semi-flush mounting to standard outlet boxes.
3. Features: Test and reset switch; Green LED for normal operation; Red LED for alarm indication; SPST alarm relay; SPST trouble relay.
4. Activates alarm contacts at multiple levels of exposure to carbon monoxide based on time weighted averages of the gas present.
5. Alarm contacts activate a supervisory condition on the fire alarm system and local audible and visible signal via remote addressable module.
6. Activates trouble contacts upon failure of the detector or loss of operating power.
7. Trouble contacts activate a trouble condition on the fire alarm system via remote addressable module.

2.9 NOTIFICATION APPLIANCES

A. Description: Equip for mounting as indicated and have screw terminals for system connections.

B. Horns: Electric vibrating polarized type 24 volt d.c. with operating mechanism mounted behind a grille. Horns shall produce a minimum sound pressure level (SPL) of 95 dBA average anechoic @ 10 ft. and 88 dBA reverberant @ 10 ft.

C. High Decibel Horns: Electronic projector polarized type 24 volt d.c. surface mounted with adjustable mounting bracket. Horns shall produce a minimum sound pressure level of 95 dBA at 10 ft. Horns shall be weatherproof and listed for outdoor use where applicable.

D. Visible Alarm Devices: Xenon strobe lights listed under UL 1971 with clear or nominal white polycarbonate lens. Strobes shall be of the synchronized type. Mount lens on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch high letters on the lens.

1. Rated Light Output: Generally, 15 candela in corridors; 110 candela elsewhere unless otherwise indicated. Comply with the minimum intensities indicated in the CABO/ANSI A117.1-1998 "Room spacing allocation" and "Corridor spacing allocation" tables for the quantity and locations on devices indicated on the drawings. Where the required intensities cannot be obtained from the indicated devices, provide additional devices evenly distributed to meet the required intensities.

2.10 REMOTE DEVICE LOCATION-INDICATING LIGHTS AND IDENTIFICATION PLATES

A. Description: LED indicating light near each smoke detector that may not be readily visible, and each sprinkler water-flow switch and valve-tamper switch. Light is connected to flash when the associated device is in an alarm or trouble mode. Lamp is flush mounted in a single gang wall plate. A red, laminated, phenolic-resin identification plate at the indicating light identifies, in engraved white letters, device initiating the signal and room where the smoke detector or valve is located. For water-flow switches, the identification plate also designates protected spaces downstream from the water-flow switch.

2.11 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.

1. Electromagnet: Requires no more than 3 W to develop 25-lbf (111-N) holding force.
2. Wall-Mounted Units: Flush mounted, unless otherwise indicated.
3. Rating: 24-V ac or dc.
4. Rating: 120-V ac.

B. Material and Finish: Match door hardware.

2.12 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module listed for use in providing a multiplex system address for listed fire and sprinkler alarm-initiating devices with normally open contacts.
DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM - EXPANSION

Section 283111 – Page 13
DCA Permit Set 08-15-2018

B. Integral Relay: Capable of providing a direct signal to the elevator controller to initiate elevator recall or to a circuit breaker shunt trip for power shutdown.

2.13 GUARDS FOR PHYSICAL PROTECTION

A. Guards shall be heavy gauge welded wire mesh painted to match the device or clear perforated or slotted ultraviolet stabilized, high impact, injection molded virgin polycarbonate.

B. Guards shall not impair the normal viewing, audibility, physical operation or testing of the equipment.

C. Pull Station Protective Covers shall be Mini Stopper Model STI-6600 Protective Lexan Covers or approved equal. Covers shall contain an integral battery and battery operated horn. The horn shall sound whenever the cover is lifted to access the pull station. Where Stopper covers are indicated as weatherproof, provide a Model SUB-317 weatherproof gasket or provide Models STI-6525 or 6535 outdoor rated covers.

2.14 FIRE ALARM WIRE AND CABLE

A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 16 AWG or sized as recommended by system manufacturer.

1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with US 1424 and UL 2196 for a 2-hour rating.

1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.
3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

D. Fire-Rated Fire Alarm Cables: 2-hour fire rated cable listed by Underwriters Laboratories UL 2196.

1. RHW Polymer-Insulated Power Cable: Copper conductors, with cross-linked polyolefin (XLPO) jacket installed in ¾-inch minimum electrical metallic tubing or rigid metal conduit.
2. Polymer Insulated Twisted Pair Fire Alarm Cable (Circuit Integrity (CI) Cable): Copper conductors, with cross-linked polyolefin (XLPO) jacket installed in ¾-inch minimum electrical metallic tubing or rigid metal conduit.
3. Copper Armored Metal Clad Polymer Insulated Power Cable. Manufactured to UL 1569 standards. Copper conductors.
PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

B. Water-Flow Detectors and Valve Supervisory Switches: Connect for each sprinkler valve station required to be supervised.

C. Ceiling-Mounted Smoke Detectors: Not less than 4 inches from a sidewall to the near edge. For exposed solid-joist construction, mount detectors on the bottom of joists. On smooth ceilings, install not more than 30 feet apart in any direction.

D. Wall-Mounted Smoke Detectors: At least 4 inches, but not more than 12 inches, below the ceiling.

E. Smoke Detectors near Air Registers: Install no closer than 60 inches.

F. Duct Mounted Smoke Detectors: Securely installed in ductwork in accordance with manufacturer's instructions and in such a manner as to obtain a representative sample of the air stream. Wherever possible locate just after a bend or air inlet to avoid stratification and a minimum of 6 duct widths downstream from the bend or inlet. Smoke detectors in classroom A/C units will be provided by others and shall be wired into the fire alarm system by the electrical contractor [through an interface module].

G. Heat Detectors in Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.

H. Audible Alarm-Indicating Devices: Where ceiling heights permit, install top of appliance not less than 90 inches above the finished floor and not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Combine audible and visible alarms at the same location into a single unit.

I. Voice / Tone Speakers: Generally audible signals shall be flush mounted multi-tap voice/tone speakers.

1. In boiler rooms, mechanical equipment rooms, etc. and outdoors audible signals shall be surface mounted supervised horn speakers.

J. Horns: Generally, and in spaces such as corridors, locker rooms, shops, cafeterias, gymnasiums, multi-purpose rooms, auditoriums, assembly areas, music rooms, work rooms, exercise rooms, classrooms, kindergartens, small group instruction rooms, offices, etc. audible signals shall be flush mounted electric vibrating horns.

1. In boiler rooms, mechanical equipment rooms, etc. and outdoors audible signals shall be surface mounted high decibel horns.

K. Chimes: In spaces such as individual classrooms, kindergartens, small group instruction rooms, offices, etc. audible signals shall be electronic chimes.

L. Visual Alarm Indicating Devices: Install with bottom of appliance not less than 80 inches and no greater than 96 inches above the finished floor.
DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM - EXPANSION
Section 283111 – Page 15
DCA Permit Set 08-15-2018

M. Combination Audible/Visual Indicating Devices: Install with top of appliance not less than 90 inches and bottom of appliance not greater than 96 inches above the finished floor.

N. Device Location-Indicating Lights: Locate in public space near the device they monitor.

O. Elevators: The Electrical Contractor shall engage a licensed elevator contractor to perform the work in the machine room, shafts and cars. Alarm and communications cables to the cars shall be plenum rated cable and shall be fastened to the traveling cables with approved fasteners. Audible and visual alarm signals and firefighter intercommunication jacks shall be flush mounted in the front panels or designated side panels of each car. Panels shall be removed for cutting. Cars shall be taken out of service one at a time while the work is being done. Audible signals shall be provided with concealed attenuating device to mute the sound level.

3.2 WIRING INSTALLATION

A. Wiring Method: Install line voltage wiring in metal raceway according to Electrical Specification Sections. Conceal raceway except in unfinished spaces and as indicated.

B. Install low voltage fire alarm cables concealed within building spaces; run cables in metal raceway where run exposed less than eight feet from finished floor.

C. Do not install conductors, wires or cables of any other system in the same raceway or cable with fire alarm power supply circuits, non-power limited fire alarm circuits or power limited fire alarm circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by the manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Make splices and connections in low voltage fire alarm cables in metal boxes with covers.

F. Make cable connections to fire alarm devices using metal boxes and cable connectors so there is no strain on the wiring termination.

G. Cable Taps: Use numbered terminal strips in junction, pull and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

H. Do not make taps or splices in supervised, hard-wired nonaddressable circuits.

I. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

J. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signal from other floors or zones.

Laurel Hall Swing Space (Bunce CIF)
Rowan University
KSS Project # 2018 - 22519
K. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the FACP and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 GUARDS FOR PHYSICAL PROTECTION

A. Provide protective guards on all fire alarm devices in cafeterias, multipurpose rooms, gymnasiums, weight rooms, locker rooms, boiler rooms, mechanical rooms, loading docks, receiving areas, pipe spaces, pipe tunnels, stages, storage rooms, shops and shafts, on the building exterior, and other spaces and areas where devices are subject to damage or accidental operation from sports, physical activities, general housekeeping, maintenance, or the movement of supplies, materials, furniture and equipment.

B. Provide pull station protective covers on all fire alarm pull stations that are located in common areas or otherwise subject to false alarm.

C. Guards are not required where the physical construction of the equipment provides adequate protection against damage.

D. Install guards after finish painting is completed.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals according to Electrical Specification Sections Section "Basic Electrical Materials and Methods."

B. Identify system components, wiring, cabling, and terminals according to Electrical Specification Sections Section "Identification."

C. All circuit conductors shall be identified within each enclosure where a tap, splice or termination is made.

D. Each cable shall be identified as to service within each enclosure, pull box and junction box.

E. Conductor and cable identification shall be by single piece, plastic coated self-laminating printed markers, or by heat-shrink type sleeves. Markers shall be attached in a manner that will not permit accidental detachment.

F. All fire alarm system cables run exposed or in mechanical spaces shall be installed in RGS conduit – ¾” minimum trade size. Fire alarm system cables run in above ceiling spaces or concealed in wall cavities may use fire alarm system MC-type cable.

3.5 GROUNDING

A. Ground cable shields and equipment according to system manufacturer's written instructions to eliminate shock hazard and to minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding.
C. Install grounding electrodes of type, size, location, and quantity as indicated. Comply with installation requirements in Electrical Specification Sections Section “Grounding.”

D. Ground equipment and conductor and cable shields. For audio circuits, minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Provide 5-ohm ground at main equipment location. Measure, record, and report ground resistance.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and connections and to supervise pretesting, testing, and adjustment of the system. Report results in writing.

B. Pretesting: After installation, align, adjust, and balance the system and perform complete pretesting. Determine, through pretesting, the compliance of the system with requirements of Drawings and Specifications. Correct deficiencies observed in pretesting. Replace malfunctioning or damaged items with new ones, and retest until satisfactory performance and conditions are achieved. Prepare forms for systematic recording of acceptance test results.

C. Report of Pretesting: After pretesting is complete, provide a letter certifying the installation is complete and fully operable, including the names and titles of witnesses to preliminary tests.

D. System Reacceptance Testing: After all new components are added, tested and accepted and all modifications, repairs, alterations and adjustments to the existing system hardware, wiring and software are completed; all components, circuits, system operations, and software functions known to be affected by the work shall be 100 percent tested; 10 percent of the remaining in initiating devices shall also be tested up to a maximum of 50 devices.

E. Final Test Notice: Provide a minimum of 10 days' notice in writing when the system is ready for final acceptance testing.

F. Minimum System Tests: Test the system according to procedures outlined in NFPA 72. Test the fire alarm control panels, annunciators, and each new or relocated alarm initiating, indicating or interfacing device in the presence of the Contractor, Owner's Architect's and Engineer's Representative, and the Local Fire Subcode Official. Minimum required tests are as follows:

1. Verify the absence of unwanted voltages between circuit conductors and ground.
2. Test all conductors for short circuits using an insulation-testing device.
3. With each circuit pair, short circuit at the far end of the circuit and measure the circuit resistance with an ohmmeter. Record the circuit resistance of each circuit on record drawings.
4. Verify that the control unit is in the normal condition as detailed in the manufacturer's operation and maintenance manual.
5. Test initiating and indicating circuits for proper signal transmission under open circuit conditions. One connection each should be opened at not less than 10 percent of initiating and indicating devices. Observe proper signal transmission according to class of wiring used.
6. Test each initiating and indicating device for alarm operation and proper response at the control unit. Test smoke detectors with actual products of combustion.
7. Test the system for all specified functions according to the approved operation and maintenance manual. Systematically initiate specified functional performance items at
each station, including making all possible alarm and monitoring initiations and using all communications options. For each item, observe related performance at all devices required to be affected by the item under all system sequences. Observe indicating lights, displays, signal tones, and annunciator indications. Observe all voice audio for routing, clarity, quality, freedom from noise and distortion, and proper volume level.

8. Test Both Primary and Secondary Power: Verify by test that the secondary power system is capable of operating the system for the period and in the manner specified.

G. Retesting: Correct deficiencies indicated by tests and completely retest work affected by such deficiencies. Verify by the system test that the total system meets Specifications and complies with applicable standards.

H. Report of Tests and Inspections: Provide a written record of inspections, tests, and detailed test results in the form of a test log. Submit log on the satisfactory completion of tests.

I. Tag all equipment, stations, and other components at which tests have been satisfactorily completed.

3.7 CLEANING AND ADJUSTING

A. Cleaning: Remove paint splatters and other spots, dirt, and debris. Touch up scratches and marred finish to match original finish. Clean unit internally using methods and materials recommended by manufacturer.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel as specified below:

1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, adjusting, and maintaining equipment and schedules. Provide a minimum of 8 hours' training.

2. Training Aid: Use the approved final version of the operation and maintenance manual as a training aid.

3. Schedule training with Owner, through Architect, with at least seven days' advance notice.

3.9 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within one year of date of Substantial Completion, provide on-site assistance in adjusting sound levels, controls, and sensitivities to suit actual occupied conditions. Provide up to three requested visits to Project site for this purpose.

END OF SECTION 283111