PROJECT MANUAL

SKYLIGHT REPLACEMENT
at the SCHOOL OF OSTEOPATHIC MEDICINE
UEC BUILDING

Rowan University

For
Facilities, Operations & Maintenance Department
Glassboro, NJ

Architect: TBS Services, Inc.
617 Station Avenue
Haddon Heights, NJ 08035
P 856.547.6250
F 856.547.6254

Bid Issue
12 December 2018
TABLE OF CONTENTS

DIVISION 01 – GENERAL REQUIREMENTS
NOT APPLICABLE

DIVISION 02 – EXISTING CONDITIONS
NOT APPLICABLE

DIVISION 03 – CONCRETE
NOT APPLICABLE

DIVISION 04 – MASONRY
NOT APPLICABLE

DIVISION 05 – METALS
NOT APPLICABLE

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES
NOT APPLICABLE

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>79200</th>
<th>JOINT SEALANTS</th>
<th>079200-1 thru 079200-9</th>
</tr>
</thead>
</table>

DIVISION 08 – OPENINGS

<table>
<thead>
<tr>
<th>086300</th>
<th>METAL FRAMED SKYLIGHT</th>
<th>086300-1 thru 086300-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>088000</td>
<td>GLAZING</td>
<td>088000-1 thru 08800-12</td>
</tr>
</tbody>
</table>

DIVISION 09 – FINISHES

<table>
<thead>
<tr>
<th>099100</th>
<th>INTERIOR PAINTING</th>
<th>099100-1 thru 099100-6</th>
</tr>
</thead>
</table>

END OF TABLE OF CONTENTS
SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes joint sealants for the following applications, including those specified by reference to this Section:

1. Exterior joints in the following vertical surfaces and horizontal nontraffic surfaces:
 a. All Metal to metal joints
 b. All other exterior joints and conditions indicated.

1.3 PERFORMANCE REQUIREMENTS

A. Provide elastomeric joint sealants that establish and maintain watertight and airtight continuous joint seals without staining or deteriorating joint substrates.

1.4 SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of standard and standard/custom colors available for each product exposed to view.

C. Samples for Verification: For each type and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- wide joints formed between two 6-inch- long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

D. Product Certificates: For each type of joint sealant and accessory, signed by product manufacturer.

E. SWRI Validation Certificate: For each elastomeric sealant specified to be validated by SWRI's Sealant Validation Program.

F. Qualification Data: For Installer.

G. Preconstruction Field Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on preconstruction testing specified in "Quality Assurance" Article.

H. Compatibility and Adhesion Test Reports: From sealant manufacturer, indicating the following:
1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.

I. Product Test Reports: Based on comprehensive testing of product formulations performed by a qualified testing agency, indicating that sealants comply with requirements.

J. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized Installer who is approved or licensed for installation of elastomeric sealants required for this Project.

B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.

C. Preconstruction Field-Adhesion Testing: Before installing elastomeric sealants, field test their adhesion to Project joint substrates as follows:

1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
2. Conduct field tests for each application indicated below:
 a. Each type of elastomeric sealant and joint substrate indicated.
 b. Each type of nonelastomeric sealant and joint substrate indicated.
3. Notify Architect seven days in advance of dates and times when test joints will be erected.
4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.
 1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
5. Report whether sealant in joint connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

D. Mockups: Build mockups incorporating sealant joints, as follows, to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution:

1. Joints in mockups of assemblies specified in other Sections that are indicated to receive elastomeric joint sealants, which are specified by reference to this Section.
E. Preinstallation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

A. Special Installer's Warranty: Installer's standard form in which Installer agrees to repair or replace elastomeric joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer's standard form in which elastomeric sealant manufacturer agrees to furnish elastomeric joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Urethane Warranty Period: Five years from date of Substantial Completion.
2. Silicone Warranty Period: Twenty years from date of Substantial Completion.

C. Special warranties specified in this Article exclude deterioration or failure of elastomeric joint sealants from the following:

1. Movement of the structure resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression caused by structural settlement or errors attributable to design or construction.
2. Disintegration of joint substrates from natural causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products listed in other Part 2 articles.
B. Basis-of-Design Product: The design for joint sealant system is based on the products and manufacturer(s) specified. Subject to compliance with requirements, provide the named product or a comparable product.

1. All substitute products shall meet or exceed the performance criteria of the designed product. Submit, for review, a detailed side-by-side comparison showing compatibility of the substitute product with the performance and warranty criteria of the designed product.

2. Contractor to bear all costs associated with the Architects review of substituted products. The contract amount to be revised via a credit Change Order to the Owner for the associated professional fees and costs, or paid directly to the Architect by the Contractor.

2.2 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range of standard and standard/custom colors.

2.3 ELASTOMERIC JOINT SEALANTS

A. Elastomeric Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied chemically curing sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.

B. Stain-Test-Response Characteristics: Where elastomeric sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

C. Single-Component Neutral -Curing Silicone Sealant:

1. Available Products:
 a. Dow Corning Corporation; 790, 795
 b. Tremco; Spectrem 3.
 c. Pecora Corporation; 895.

2. Type and Grade: S (single component) and NS (nonsag).
3. Class: 100/50.
4. Use Related to Exposure: NT (nontraffic).
5. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O.
 a. Use O Joint Substrates: At all joints unless noted otherwise.

6. Uses At all metal-to-metal and metal-to-masonry joints, masonry to masonry, etc, and all other joints unless noted otherwise.

D. Multicomponent Nonsag Urethane Sealant:

1. Available Products:
a. Sikagard 15LM as manufactured by Sika Corp (Basis of Design)
b. Pecora Corporation; Dynatrol
c. Tremco; Dymeric.
d. Sonneborn; Sonolastic NP2.

2. Type and Grade: M (multicomponent) and NS (nonsag).
3. Class: 50.
4. Use[s] Related to Exposure: NT (nontraffic).
5. Uses: At all areas which interface elastomeric coatings and conditions indicated.

2.4 PREFORMED FOAM SEALANTS

A. Preformed Foam Sealant Joint System: Where joint sealants of this type are indicated per Remedial Work Note ‘F’ of the project drawings, provide products consisting of precompressed, acrylic-impregnated expanding foam preformed sealant system with pre-coated factory-applied, low-modulus silicone face.

1. Basis of Design Products: Subject to compliance with requirements, provide the named product or a comparable product meeting or exceeding the requirements of the following:
 a. ColorSeal as manufactured by Emseal Joint Systems, Ltd.

2. Performance Requirements:
 a. Silicone to have been tested for hardness according to ASTM D2240 (Shore-A hardness not to exceed 25).
 b. Product must be proved to have been tested to exceed the requirements of curtain wall performance tests ASTM E-330, E-283, and E-331.
 c. Product must be proved to have been tested to Xenon Arc Weatherometer testing which includes Intentional Damage to Primary Surface with no performance change over 2000 hours according to ASTM G26-77.
 d. Product movement capability to be minimum +25% and -25% (total 50%) of nominal material size.

2.5 JOINT-SEALANT BACKING

A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin) or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:

C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D 1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 26 deg F. Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and to otherwise contribute to optimum sealant performance.

D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint
surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.6 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air.

3. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.

B. Joint Priming: Prime joint substrates[... where recommended in writing by joint-sealant manufacturer,] based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint configuration per Figure 5A in ASTM C 1193, unless otherwise indicated.
 4. Provide flush joint configuration where indicated per Figure 5B in ASTM C 1193.
 5. Provide recessed joint configuration of recess depth and at locations indicated per Figure 5C in ASTM C 1193.
 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

G. Installation of Preformed Joints: Install according to manufacturer's written instructions.
3.4 INSTALLATION OF PREFORMED FOAM SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealing against the substrate to be achieved through a combination of the pressure-sensitive adhesive impregnation, and the backpressure of the expanding foam, as well as through the addition, by the contractor in the field, of a corner bead of silicone supplied by the sealant manufacturer.

C. Provide fabricated corners and transitions by manufacturer at eave/knee and ridge adjacent to curtainwall system.

D. Install Preformed Foam Sealants in maximum lengths according to manufacturer's written installation instructions to minimize end-to-end joints and seams.

3.5 FIELD QUALITY CONTROL

A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:

 1. Extent of Testing: Test completed elastomeric sealant joints as follows:
 a. Perform 1 test for each 100 feet of joint length thereafter or minimum 1 test per elevation, per substrate condition.

 2. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab in Appendix X1 in ASTM C 1193, as appropriate for type of joint-sealant application indicated.
 a. For joints with dissimilar substrates, verify adhesion to each substrate separately; do this by extending cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

 3. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field-adhesion-test log.

 4. Inspect tested joints and report on the following:
 a. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 b. Whether sealants filled joint cavities and are free of voids.
 c. Whether sealant dimensions and configurations comply with specified requirements.

 5. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations referencing the construction documents, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions.

 6. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.

B. Evaluation of Field Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove
sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.6 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.7 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079200
SECTION 086300 - METAL-FRAMED SKYLIGHTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes skylights with metal framing.

B. Related Sections:
 1. Division 7 Section 079200 – "Joint Sealants" for field-applied sheet metal flashing and trim sealants.
 2. Division 7 Section 076200 – “Sheet Metal Flashings and Trim” for installing sheet metal flashing and trim integral with skylight system.
 3. Division 8 Section 088000 – “Glazing”

1.3 SUBMITTALS NOTE: It is the contractor’s responsibility to provide the required submittal information in accordance with the project documents in the appropriate format, and timely manner to allow for the work to occur within the time frame within the University’s milestone schedule. All costs associated with delays (i.e. temporary installations/protectors, off-hours/overtime work, etc.) is the responsibility of the contractor. Provide all Submittals outlined herein including product data, shop drawings, delegated design, fabrication samples, qualification data, warranties, etc.in a single complete package for review by the Architect.

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for metal-framed skylights.

B. Shop Drawings: For metal-framed skylights. Project Specific including plans, elevations, sections, details, and attachments to other work.

 1. Include details of provisions for assembly expansion and contraction and for draining moisture within the assembly to the exterior.
 2. Include full-size isometric details of each vertical-to-horizontal intersection of assembly, showing the following:
 a. Joinery including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.

C. Samples for Initial Selection: For units with factory-applied color finishes.
D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

E. Fabrication Sample: Of each framing intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
 1. Joinery including concealed welds.
 2. Anchorage.
 5. Flashing and drainage.
 6. Fabrication samples 12”x12” minimum shall be provided at the following conditions:
 a. Sill at outside corner with gable sash
 b. Ridge with intersecting gable sash

7. Submit Fabrication samples with shop drawings for review by Architect.

F. Delegated-Design Submittal: For metal-framed skylights indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

G. Qualification Data: For qualified Installer. Provide a letter from the manufacturer of the skylight system confirming the installer is factory trained and certified and eligible to receive the specified warranty.

H. Welding certificates.

I. Compatibility and Adhesion Test Reports: For structural-sealant-glazed skylights, test reports from sealant manufacturer indicating that joint sealants have been tested for each material that will come in contact with sealants.

J. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for metal-framed skylights.

K. Field quality-control reports.

L. Warranties: Sample of special warranties.

1.4 QUALITY ASSURANCE

A. Work of this Section, including design, engineering, fabrication, finishing, preparation at the job site, erection and glazing of the skylight system shall be the responsibility of the skylight manufacturer. The manufacturer shall be regularly engaged in the preceding phases of construction of skylights and able to demonstrate that he has performed successfully on comparably sized projects and of comparable design complexity over at least the previous ten (10) years.

B. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of metal-framed skylights required for this Project.

C. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.

D. Product Options: Information on Drawings and in Specifications establishes requirements for skylights' aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they
relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including testing conducted by an independent testing agency and in-service performance.

1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

1. Joint designs are reviewed and approved by structural-sealant manufacturer.
2. Quality-control program development and reporting comply with ASTM C 1401 recommendations for material qualification procedures, preconstruction sealant-testing program, and procedures and intervals for fabrication and installation reviews and checks.
3. Perform manufacturer's standard tests for compatibility and adhesion of sealants with each material that will come in contact with sealants.

G. Provide metal-framed skylights that comply with test-performance requirements indicated, as evidenced by reports of tests performed on manufacturer's standard assemblies by a qualified independent testing agency.

H. Preinstallation Conference: Conduct a preinstallation conference at Project site no later than 14 days prior to the start of the work

1. Attendees: Installer, installer’s job superintendent and/or foreman and representatives of manufacturers as well as sub-contractors involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including but not limited to requirements for the following:
 b. Options.
 c. Submittals.
 d. Review of mockups.
 e. Possible conflicts.
 f. Compatibility problems.
 g. Time schedules.
 h. Weather limitations.
 i. Manufacturer's written recommendations.
 j. Warranty requirements.
 k. Compatibility of materials.
 l. Acceptability of substrates.
 m. Space and access limitations.
 n. Testing and inspecting requirements.
 o. Required performance results.
 p. Protection of construction and personnel.
3. Record significant conference discussions, agreements, and disagreements.
4. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
1.5 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal-framed skylights that fail in materials, workmanship and/or installation within specified warranty period. Warranty is required from manufacturer and not a reseller or other contracting party. Failures include, but are not limited to, the following:

 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration caused by thermal movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Adhesive or cohesive sealant failures.
 e. Finishes. Warrant finish per the manufacturer's standard warranties.
 f. Defective workmanship and materials not specified elsewhere.
 g. Water leakage.
 h. Glazing. Warrant glass against defective materials, delamination, seal failure, and defects in manufacture per the glass manufacturer's standard warranties. Glass breakage is not warranted.

2. Warranty Period: 15 years from date of Substantial Completion against leakage, defective framing design, defective framing materials, and workmanship. Finish warranty ten (10) years. Glass Warranty, see specification section 088000.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: The design for skylight system is based on the products and manufacturer(s) specified. Subject to compliance with requirements, provide the named product or a comparable product.

 1. All substitute products shall meet or exceed the performance criteria of the designed product. Submit, for review, a detailed side-by-side comparison showing compatibility of the substitute product with the performance and warranty criteria of the designed product.

 2. All substitute and/or equivalent products/systems shall include a detailed schedule confirmed with the manufacturers demonstrating compliance with the project milestone schedule. Detailed schedule shall include milestone dates for submission of shop drawings and all other submittals as required herein, and shall allow a minimum of 2-weeks for architects review. It is the contractor's responsibility to provide the required submittal information in accordance with the project documents in the appropriate format and timely manner to allow for the work to occur within the time frame within the University's milestone schedule. All costs associated with delays (i.e. temporary installations/protections, off-hours/overtime work, etc.) is the responsibility of the contractor.

 3. Contractor to bear all costs associated with the Architects review of substituted products. The contract amount to be revised via a credit Change Order to the Owner for the associated professional fees and costs, or paid directly to the Architect by the Contractor.

B. Provide skylight system and associated components the following:

 1. Super Sky Products Enterprises, LLC (*Basis of Design*)
C. Other Available Manufacturer’s, pending compliance with performance and warranty requirements outlined herein, as well as the project milestone schedule
 1. Wasco Skylights
 2. Oldcastle Building Envelope

D. Skylight Types: Provide skylights of the following type/configuration as illustrated within the project drawings
 1. Ridge configuration

2.2 PERFORMANCE REQUIREMENTS

A. General: Metal-framed skylights shall withstand the effects of the following without failure due to defective manufacture, fabrication, installation, or other defects in construction:

 1. Structural loads.
 2. Thermal movements.
 3. Movements of supporting structure.
 4. Dimensional tolerances of support system and other adjacent construction.
 5. Failure includes, but is not limited to, the following:
 a. Deflection exceeding specified limits.
 b. Thermal stresses transferring to building structure.
 c. Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 d. Glazing-to-glazing contact.
 e. Noise or vibration created by wind and by thermal and structural movements.
 f. Loosening or weakening of fasteners, attachments, and other components.
 g. Sealant failure.

B. Delegated Design: Design metal-framed skylights, including comprehensive engineering analysis by a qualified professional engineer licensed in New Jersey, using performance requirements and design criteria indicated.

C. Design Criteria:

 1. Extruded aluminum members with a system of alternate serrations for attachment of exterior glass retainers with 1/4-in. x 20 stainless steel screws and snap-on beauty caps.
 2. Condensation guttering system integral with skylight framing members for positive drainage of condensation.
 3. Flush glazed exterior horizontal joints with field applied structural silicone.
 4. Full silicone wet seals along both sides of all exterior glass retainers.

D. Structural Loads:

 1. Wind Loads:
 a. Basic Wind Speed: 95 mph
 b. Importance Factor: 1
 c. Exposure Category: B

 E. Deflection of Framing Members: At design wind pressure, as follows:

 1. The deflection of the framing member in a direction normal to the plane of glass when subjected to a uniform load deflection test in accordance with ASTM E330, and per the
above specified loads, shall not exceed L/175, up to 1-in. maximum, for clear spans under 20-ft., or L/240 for clear spans greater than 20-ft.

2. The deflection of a framing member in a direction parallel to the plane of glass, when carrying its full dead load, shall not exceed an amount which will reduce the glass or panel bite below 75% of the design dimension and the member shall have a 1/8-in. minimum clearance between itself and the edge of the fixed panel, glass, or component immediately adjacent, nor shall it impair the function of or damage any joint seals.

F. Air Infiltration: Provide metal-framed skylights with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 6.24 lbf/sq. ft.

G. Water Penetration: Provide metal-framed skylights that do not evidence water leakage through fixed glazing and framing areas when tested according to ASTM E 331 and AAMA 501.1 under dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 12 lbf/sq. ft.

1. Maximum Water Leakage: No uncontrolled water penetrating aluminum-framed systems or water appearing on systems' normally exposed interior surfaces from sources other than condensation. Water leakage does not include water controlled by flashing and gutters that is drained to exterior and water that cannot damage adjacent materials or finishes.

H. Thermal Movements: Provide metal-framed skylights that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F ambient; 180 deg F material surfaces.

I. Structural Sealant: Capable of withstanding tensile and shear stresses imposed without failing adhesively or cohesively. When tested for preconstruction adhesion and compatibility, cohesive failure of sealant shall occur before adhesive failure.

J. Energy Performance: Provide metal-framed skylights with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:

1. Thermal Transmittance (U-Factor): Fixed glazing and framing areas shall have U-factor of not more than 0.60 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.40 as determined according to NFRC 200.

2.3 FRAMING SYSTEMS

A. Aluminum: Alloy and temper recommended in writing by manufacturer for type of use and finish indicated.

1. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221
2. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
3. Structural Profiles: ASTM B 308/B 308M.
4. Welding Rods and Bare Electrodes: AWS A5.10/A5.10M.

B. Principal Supporting Members: .125-in. minimum thickness extruded aluminum, alloy 6005-T5 or 6061-T6 per ASTM B221. Sizes, shapes and profiles as indicated on the Contract Drawings.
C. Pressure Caps: Manufacturer's standard aluminum components that mechanically retain glazing.
 1. 0.062-in. minimum thickness extruded aluminum, alloy 6063-T5 per ASTM B221.
 2. Include snap-on aluminum trim that conceals fasteners.

E. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning skylight components.

F. Fasteners and Accessories: Manufacturer's standard, corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. At pressure caps, use ASTM B8 300 series stainless steel screws
 2. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 3. Reinforce members as required to receive fastener threads.
 4. Use exposed fasteners with trussheads / cap screws in oversized holes to allow for thermal expansion, fabricated from Series 300 stainless steel.

G. Exposed Flashing and Closures: Manufacturer's aluminum components not less than 0.040 inch thick, minimum of profiles and configuration as indicated within Contract documents

H. Insulated Curb and Closure Flashing: Provide manufacturers continuously insulated curb and closure flashing at entire perimeter of skylight(s).

I. Glazing Strips:
 1. Extruded EDPM rubber designed to comply with the following specifications:
 a. Hardness: ASTM D2240, Type A: Durometer 50 (+/-5).
 b. Tensile Strength: ASTM D412: 800 psi (min.).
 c. Elongation: 300% (min.).
 d. Color: Black.
 2. Compression Set: ASTM D395 Method B, 22 hours @ 212 ºF: 25% (max.)
 3. Heat Aging Characteristics:
 a. 70 hours @ 212 ºF.
 b. Hardness: ASTM D2240, Type A: Durometer 50 (+/-5).
 c. Tensile Change: ASTM D412: -10%.
 d. Elongation Change: ASTM D412: -20%.
 4. ASTM D1171 Weather Resistance at 1 Part Ozone per Million, 500 hours at 20% Elongation: No cracks.
 a. No visual checks, cracks or breaks after completion of tests.

J. Setting Blocks:
 1. Extruded Type II silicone rubber designed to permit adhesion and comply with the following specifications:
 a. Hardness: ASTM D2240, Type A: Durometer 80 (+/-5).
 b. Color: Black.

K. Framing Sealants: As specified in Division 07920 Section "Joint Sealants."
L. Corrosion-Resistant Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.4 GLAZING

A. Glazing: As specified in Division 08 Section "Glazing."

B. Bond-Breaker Tape: Manufacturer's standard tetrafluoroethylene-fluorocarbon or polyethylene material to which sealants will not develop adhesion.

C. Glazing Sealants: As specified in Division 07 Section "Joint Sealants."
 1. Provide sealants for use inside of the weatherproofing system that have a VOC content as indicated when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Structural Sealant: ASTM C 1184, neutral-curing silicone formulation compatible with system components with which it comes in contact, specifically formulated and tested for use as structural sealant, and approved by structural-sealant manufacturer for use in metal-framed skylights indicated.
 a. Color: As selected by Architect from manufacturer's full range.
 3. Weatherseal Sealant: ASTM C 920 for Type S, Grade NS, Class 25, Uses NT, G, A, and O; neutral-curing silicone formulation compatible with structural sealant and other components with which it comes in contact; and recommended in writing by structural- and weatherseal-sealant and metal-framed skylight manufacturers for this use.

2.5 FABRICATION

A. Where practical, fit and assemble metal-framed skylights in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Fabricate and pre-assemble aluminum components before finishing to assure proper construction and tolerances; disassemble prior to finishing.

C. Fabricate aluminum components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Internal guttering systems or other means to drain water passing joints, condensation occurring within framing members, and moisture migrating within skylight to exterior.
 4. Physical and thermal isolation of glazing from framing members.
 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.

D. Fabricate aluminum sill closures with weep holes and for installation as continuous component.

E. Reinforce aluminum components as required to receive fastener threads.
F. Weld aluminum components in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

G. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.6 ALUMINUM FINISHES

A. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2604-05 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.

1. Color and Gloss: As selected by Rowan University and Architect from manufacturer’s full range.

2.7 SOURCE QUALITY CONTROL

A. Structural-Sealant Glazing: Perform quality-control procedures complying with ASTM C 1401 recommendations including, but not limited to, material qualification procedures, sealant testing, and fabrication reviews and checks.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:

1. Installation is to be completed under manufacturer’s direction and authorization. Manufacturer is solely responsible for maintaining all applicable warranties related to workmanship and leakage as specified in Paragraph 1.5. Comply with manufacturer’s written instructions.

2. Comply with manufacturer’s written instructions.
3. Do not install damaged components.
4. Fit joints between aluminum components to produce hairline joints free of burrs and distortion.
5. Rigidly secure nonmovement joints.
6. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
7. Weld components in concealed locations to minimize distortion or discoloration of finish. Protect glazing surfaces from welding.
8. Seal joints watertight unless otherwise indicated.

B. Metal Protection: Where aluminum will contact dissimilar materials, protect against galvanic action by painting contact surfaces with protective coating or by installing nonconductive spacers as recommended in writing by manufacturer for this purpose.

C. Install continuous aluminum sill closure with weatherproof expansion joints and locked and sealed or welded corners. Locate weep holes at rafters.

D. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within skylight to exterior.

E. Install components plumb and true in alignment with established lines and elevations.

F. Install glazing as specified in Division 08 Section "Glazing."
 1. Structural-Sealant Glazing:
 a. Prepare surfaces that will contact structural sealant according to structural-sealant manufacturer's written instructions to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.
 b. Install weatherseal sealant according to Division 07 Section "Joint Sealants" and according to weatherseal-sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind weatherseal sealant as recommended in writing by weatherseal-sealant manufacturer.

G. Erection Tolerances: Install metal-framed skylights to comply with the following maximum tolerances:
 1. Alignment: Limit offset from true alignment to 1/32 inch where surfaces abut in line, edge to edge, at corners, or where a reveal or protruding element separates aligned surfaces by less than 3 inches; otherwise, limit offset to 1/8 inch.
 2. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet but no greater than 1/2 inch over total length.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
 1. Contractor will ensure appropriate access to the test areas is provided for both the testing agency as well as the architect and Rowan University representatives to observe the testing. This shall include appropriate, up-close, safe access at the interior of the skylight during the testing via scaffolding and/or man-lifts.
 2. The contractor is responsible to ensure scheduling of testing agency allows for Architect to observe AAMA 503 tests concurrent with regularly schedule construction progress meetings (every two weeks). Contractor to bear all costs associated with the Architects review of required testing outside of the regularly scheduled construction progress meetings (every two weeks) and/or at any time beyond the date of substantial completion outlined within the construction milestone schedule issued by the University with the Notice to Proceed. The contract amount to be revised via a credit Change Order to the Owner for the associated professional fees and costs.
B. Testing Services: Testing and inspecting of representative areas of metal framed skylight system and associated components shall take place as installation proceeds to determine compliance of installed assemblies with specified requirements.

1. Testing and inspecting agency will interpret tests and state in each report whether tested work complies with or deviates from requirements.
 a. Testing Methodology: Testing of skylight system for air infiltration and water resistance shall be performed according to AAMA 503, by applying same test pressures required to determine compliance with AAMA/WDMA 101/I.S.2/NAFS.
 b. Air Infiltration: Areas shall be tested for air leakage of 0.6 cfm/sq. ft. of fixed wall area when tested according to ASTM E 783 at a minimum static-air-pressure differential of 6.24 lbf/sq. ft. (300 Pa)
 c. Water Penetration: Areas shall be tested according to ASTM E 1105.
 1) Test Procedures: Test under uniform and cyclic static-air pressure.
 2) Static-Air-Pressure Difference: 12 psf.
 3) Water Penetration: None.
 d. Testing Extent: Perform testing at two (2) entire units at locations selected by Architect which shall include:
 1) One (1) Type 1, the entire unit
 2) One (1) Type 2, the entire unit
 3) Testing of the two (2) skylight types outlined above will be performed at two (2) independent test dates as determined by the Architect; one shortly after the start of the installation and one during the progress of the installation.
 e. Test Reports: Shall be prepared according to AAMA 503.

2. Structural-Sealant Glazing Inspection: After installation of metal-framed skylights is complete, structural-sealant glazing shall be inspected and evaluated according to ASTM C 1401 recommendations for quality-control procedures.

C. Remove and replace non complying aluminum skylight and/or perform acceptable corrective/remedial work to skylight where test results indicate that do not comply with the specified performance requirements and retest failed units as specified above.

1. Upon successful completion of retesting the corrective/remedial work performed is required to be performed at all similar conditions and locations and one (1) additional location of the same type/configuration is to be tested

D. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

E. Prepare test and inspection reports.

END OF SECTION 086300
SECTION 088000 - GLAZED

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 1. Division 8 Section 086301 – "Metal Framed Skylight Repair/Renovation"

1.3 DEFINITIONS
A. Manufacturers of Glass Products: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
C. Interspace: Space between lites of an insulating-glass unit that contains dehydrated air or a specified gas.
D. Deterioration of Coated Glass: Defects developed from normal use that are attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in metallic coating.
E. Deterioration of Insulating Glass: Failure of hermetic seal under normal use that is attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
F. Deterioration of Laminated Glass: Defects developed from normal use that are attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1.4 PERFORMANCE REQUIREMENTS
A. General: Provide glazing systems capable of withstanding normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable
to the following: defective manufacture, fabrication, and installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Glass Design: Glass thickness designations indicated are minimums and are for detailing only. Confirm glass thicknesses by analyzing Project loads and in-service conditions. Provide glazing lites in the thickness designations indicated for various size openings, but not less than thicknesses and in strengths (annealed or heat treated) required to meet or exceed the following criteria:

1. Glass Thicknesses: Select minimum glass thicknesses to comply with ASTM E 1300, according to the following requirements:
 a. Specified Design Wind Loads: 25 lbs sq. ft., but not less than wind loads applicable to Project as required by ASCE 7 "Minimum Design Loads for Buildings and Other Structures": Section 6.0 "Wind Loads."

2. Probability of Breakage for Vertical Glazing: 8 lites per 1000 for lites set vertically or not more than 15 degrees off vertical and under wind action.
 a. Load Duration: 60 seconds or less.

3. Maximum Lateral Deflection: For the following types of glass supported on all 4 edges, provide thickness required that limits center deflection at design wind pressure to 1/50 times the short side length or 1 inch, whichever is less.
 a. For insulating glass.

5. Vertical Glazing: For glass surfaces sloped 15 degrees or less from vertical, design glass to resist design wind pressure based on glass type factors for short-duration load.

6. Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass to resist each of the following combinations of loads:
 a. Outward design wind pressure minus the weight of the glass. Base design on glass type factors for short-duration load.
 b. Inward design wind pressure plus the weight of the glass plus half of the design snow load. Base design on glass type factors for short-duration load.
 c. Half of the inward design wind pressure plus the weight of the glass plus the design snow load. Base design on glass type factors for long-duration load.

C. Probability of Breakage for Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass for a probability of breakage not greater than 0.001.

D. Thermal Movements: Provide glazing that allows for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures acting on glass framing members and glazing components. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
E. Thermal and Optical Performance Properties: Provide glass with performance properties specified based on manufacturer's published test data, as determined according to procedures indicated below:

1. For laminated-glass lites, properties are based on products of construction indicated.
2. For insulating-glass units, properties are based on units with lites 1/8" and a nominal ¾" wide interspace.
3. Center-of-Glass Values: Based on using LBL-44789 WINDOW 5.0 computer program for the following methodologies:
 a. U-Factors: NFRC 100 expressed as Btu/ sq. ft. x h x deg F.

1.5 SUBMITTALS

A. Product Data: For each glass product and glazing material indicated.

B. Samples: For the following products, in the form of 12-inch-square Samples for glass and of 12-inch-long Samples for sealants. Install sealant Samples between two strips of material representative in color of the adjoining framing system.

C. Samples: For the following products, in the form of 12-inch-square Samples for glass.
 1. Coated vision glass.
 2. Insulating glass for each designation indicated.
 3. Laminated glass with colored interlayer.

D. Glazing Schedule: Use same designations indicated on Drawings for glazed openings in preparing a schedule listing glass types and thicknesses for each size opening and location.

E. Product Certificates: Signed by manufacturers of glass and glazing products certifying that products furnished comply with requirements.
 1. For solar-control low-e-coated glass, provide documentation demonstrating that manufacturer of coated glass is certified by coating manufacturer.

F. Qualification Data: For installers.

G. Preconstruction Adhesion and Compatibility Test Report: From glazing sealant manufacturer indicating glazing sealants were tested for adhesion to glass and glazing channel substrates and for compatibility with glass and other glazing materials.

H. Product Test Reports: For each of the following types of glazing products:
 1. Insulating glass.
 2. Glazing sealants.

I. Warranties: Special warranties specified in this Section.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed glazing similar in material, design, and extent to that indicated for this Project; whose work has resulted in glass installations with a record of successful in-service performance; and who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

B. Source Limitations for Glass: Obtain the following through one source from a single manufacturer for each glass type: clear float glass, coated float glass, and insulating glass.

C. Source Limitations for Glazing Accessories: Obtain glazing accessories through one source from a single manufacturer for each product and installation method indicated.

D. Glass Product Testing: Obtain glass test results for product test reports in "Submittals" Article from a qualified testing agency based on testing glass products.

1. Glass Testing Agency Qualifications: An independent testing agency with the experience and capability to conduct the testing indicated, as documented according to ASTM E 548.

E. Elastomeric Glazing Sealant Product Testing: Obtain sealant test results for product test reports in "Submittals" Article from a qualified testing agency based on testing current sealant formulations within a 36-month period.

1. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated, as documented according to ASTM E 548.
2. Test elastomeric glazing sealants for compliance with requirements specified by reference to ASTM C 920, and where applicable, to other standard test methods.

F. Preconstruction Adhesion and Compatibility Testing: Submit to elastomeric glazing sealant manufacturers, for testing indicated below, samples of each glazing material type, tape sealant, gasket, glazing accessory, and glass-framing member that will contact or affect elastomeric glazing sealants:

1. Use ASTM C 1087 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of glazing sealants to glass, tape sealants, gaskets, and glazing channel substrates.
2. Submit not fewer than eight pieces of each type of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials.
3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
4. For materials failing tests, obtain sealant manufacturer's written instructions for corrective measures, including the use of specially formulated primers.
5. Testing will not be required if elastomeric glazing sealant manufacturers submit data based on previous testing of current sealant products for adhesion to, and compatibility with, glazing materials matching those submitted.

G. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

H. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of the following testing and inspecting agency:

1. Insulating Glass Certification Council.

I. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

1. Build mockups in the location and of the size indicated or, if not indicated, as directed by Architect.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

J. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section “Project Management and Coordination.”

1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review temporary protection requirements for glazing during and after installation.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions and as needed to prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

B. For insulating-glass units that will be exposed to substantial altitude changes, comply with insulating-glass manufacturer's written recommendations for venting and sealing to avoid hermetic seal ruptures.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1. Do not install liquid glazing sealants when ambient and substrate temperature conditions are outside limits permitted by glazing sealant manufacturer or below 40 deg F.

1.9 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form, made out to Owner and signed by coated-glass manufacturer agreeing to replace coated-glass units that deteriorate as defined in "Definitions" Article, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.

1. Warranty Period: 10 years from date of Substantial Completion.
B. Manufacturer's Special Warranty on Laminated Glass: Manufacturer's standard form in which laminated-glass manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Product: Subject to compliance with requirements, provide product specified.

2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 GLASS PRODUCTS

A. Annealed Float Glass: ASTM C 1036, Type I (transparent float glass), Quality-Q3; of class indicated.

B. Heat-Treated Float Glass: ASTM C 1048; Type I (transparent flat glass); Quality-Q3; of class, kind, and condition indicated.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed, unless otherwise indicated.

2. Provide Kind HS (heat-strengthened) float glass in place of annealed float glass where needed to resist thermal stresses induced by differential shading of individual glass lites and to comply with glass design requirements specified in Part 1 "Performance Requirements" Article.

3. For uncoated glass, comply with requirements for Condition A.

4. For coated vision glass, comply with requirements for Condition C (other uncoated glass).

5. Provide Kind FT (fully tempered) float glass in place of annealed or Kind HS (heat-strengthened) float glass where safety glass is indicated.

C. Sputter-Coated Float Glass: ASTM C 1376, float glass with metallic-oxide or -nitride coating deposited by vacuum deposition process after manufacture and heat treatment (if any), and complying with other requirements specified.

D. Insulating-Glass Units, General: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, and complying with ASTM E 774 for Class CBA units and with requirements specified in this Article and in Part 2 "Insulating-Glass Units" Article.

1. Provide Kind HS (heat-strengthened) float glass in place of annealed glass where needed to resist thermal stresses induced by differential shading of individual glass lites.
and to comply with glass design requirements specified in Part 1 “Performance Requirements” Article.

2. Provide Kind FT (fully tempered) glass lites where safety glass is indicated.

3. Overall Unit Thickness and Thickness of Each Lite: Dimensions indicated for insulating-glass units are nominal and the overall thicknesses of units are measured perpendicularly from outer surfaces of glass lites at unit's edge.

4. Sealing System: Dual seal, with primary and secondary sealants as follows:
 a. Manufacturer's standard sealants.

2.3 LAMINATED GLASS

A. Laminated Glass: ASTM C 1172, and complying with testing requirements in 16 CFR 1201 for Category II materials, and with other requirements specified. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.

1. Construction: Laminate glass with 0.60-inch minimum polyvinyl butyral interlayer to comply with interlayer manufacturer's written recommendations.

2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.

3. Interlayer Color: Clear unless otherwise indicated.

B. Laminated Glass Units:

1. For All Locations unless otherwise noted

2. Basis of Design: Glass Units with acid etching by Walker Glass Company Ltd (Basis of Design)

3. Monolithic Laminated Glass (To Match Existing).
 a. Overall Unit Thickness and Thickness of Each Lite: 9/16” overall
 b. Outdoor Lite: 1/4” Gray, Fully Tempered (FT)
 1) Acid Etched: Vitre Claire Satinlite on the forth surface
 c. Interlayer: .060” PVB
 d. Indoor Lite Ply 2: 1/4”, Fully Tempered (FT) (clear) float glass.

2.4 GLAZING GASKETS

A. Dense Compression Gaskets: Molded or extruded gaskets of material indicated below, complying with standards referenced with name of elastomer indicated below, and of profile and hardness required to maintain watertight seal:

2. EPDM, ASTM C 864.
4. Thermoplastic polyolefin rubber, ASTM C 1115.
5. Any material indicated above.
B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned gaskets of material indicated below; complying with ASTM C 509, Type II, black; and of profile and hardness required to maintain watertight seal:

1. Neoprene.
2. EPDM.
4. Thermoplastic polyolefin rubber.
5. Any material indicated above.

2.5 GLAZING SEALANTS

A. General: Provide products of type indicated, complying with the following requirements:

1. Compatibility: Select glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

2.6 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastomeric blocks or continuous extrusions with a Shore, Type A durometer hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

2.7 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to glaze openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing glazing, with Installer present, for compliance with the following:

1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
2. Presence and functioning of weep system.
3. Minimum required face or edge clearances.
4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Glazing channel dimensions, as indicated on Drawings, provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances. Adjust as required by Project conditions during installation.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction sealant-substrate testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches as follows:

1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.

2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Do not remove release paper from tape until just before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

A. Fabricate compression gaskets in lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with butt joints and sealed together at corners.

C. Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Install gaskets so they protrude past face of glazing stops.
3.6 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.7 CLEANING AND PROTECTION

A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels, and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations, including weld splatter. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

E. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

END OF SECTION 088000
SECTION 099100 – PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following substrates:
 1. All exposed surfaces of the interior steel structure beneath the skylights

1.3 DEFINITIONS

A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.

B. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.

C. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.

D. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

E. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

F. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples for Initial Selection: For each type of topcoat product.

C. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 2. Step coats on Samples to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

D. Product List: For each product indicated, include the following:
1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.

2. Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.

3. VOC content.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.6 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

 1. Architect will select one surface to represent surfaces and conditions for application of each paint system specified in Part 3.

 a. Vertical and Horizontal Surfaces: Provide samples of at least 25 sq. ft.
 b. Other Items: Architect will designate items or areas required.

 2. Final approval of color selections will be based on mockups.

 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.

 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

B. Preconstruction Field-Adhesion Testing:

 1. Perform adhesion per ASTM D3359-09, Measuring Adhesion by Tape, Method A. Minimum adhesion rating of 4A is required on 0 to 5 scale.

 a. Testing Extent: locate test samples to demonstrate adhesion to all substrates and conditions within project.

C. The Contractor shall be required to complete, maintain, and submit Daily Applicator Checklists.

D. Preinstallation Conference: Conduct a preinstallation conference at Project site no later than 14 days prior to the start of the work

 1. Attendees: Installer, installers job superintendent and/or foreman and representatives of manufacturers as well as sub-contractors involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including but not limited to requirements for the following:

b. Options.
c. Submittals.
d. Review of mockups.
e. Possible conflicts.
f. Compatibility problems.
g. Time schedules.
h. Weather limitations.
i. Manufacturer's written recommendations.
j. Warranty requirements.
k. Compatibility of materials.
l. Acceptability of substrates.
m. Space and access limitations.
n. Testing and inspecting requirements.
o. Required performance results.
p. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements.

4. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
b. Sherwin-Williams Company (The).
c. Benjamin Moore & Co

B. Basis-of-Design Product: The design for paint systems is based on the products and manufacturer(s) specified. Subject to compliance with requirements, provide the named product or a comparable product.

1. All substitute products shall meet or exceed the performance criteria of the designed product. Submit, for review, a detailed side-by-side comparison showing compatibility of the substitute product with the performance and warranty criteria of the designed product.

2. Contractor to bear all costs associated with the Architects review of substituted products. The contract amount to be revised via a credit Change Order to the Owner for the associated professional fees and costs, or paid directly to the Architect by the Contractor.

2.2 PAINT, GENERAL

A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."

B. Material Compatibility:

1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. VOC Content: Provide materials that comply with VOC limits of authorities having jurisdiction.

D. Colors: As selected by Rowan University and Architect from manufacturer's full range.

E. Gloss/Sheen: As selected by Rowan University and Architect from manufacturer's full range

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Wood: 15 percent.
2. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:

1. SSPC-SP 11, "Power Tool Cleaning to Bare Metal."

E. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Perform adhesion per ASTM D3359, Measuring Adhesion by Tape, Method A. Minimum adhesion rating of 4A is required on 0 to 5 scale.

B. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. All new and existing exposed ductwork, piping, hangers/supports and accessories, etc.:
 1. Prime Coat:
 a. Non-Ferrous Metal (galvanized & Aluminum): Acrylic Metal Primer as manufactured by Benjamin Moore & Co.
 b. Ferrous Metal (Steel & Iron): Super Spec HP Acrylic Metal Primer as manufactured by Benjamin Moore & Co.
 c. Other substrates: As recommended by Benjamin Moore Co.
 d. Coordinate Gloss and Color/Tint with Top/Finish Coat
 2. Intermediate Coat: Eco-Spec WB Interior Latex as manufactured by Benjamin Moore & Co.
 a. Coordinate Gloss and Color/Tint with Top/Finish Coat.
 3. Topcoat: Eco-Spec WB Interior Latex as manufactured by Benjamin Moore & Co.
 a. Rowan University to select gloss and color/finish from manufacturer's full available range.

END OF SECTION 099100