SECTION 000002 - PROJECT TEAM

<table>
<thead>
<tr>
<th>Role</th>
<th>Company</th>
<th>Address</th>
<th>Contact</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Rowan University</td>
<td>40 Academy St N</td>
<td>Erin Bisceglia</td>
<td>856.256.4824</td>
</tr>
<tr>
<td>Architect of Record</td>
<td>SOSH Architects</td>
<td>1020 Atlantic Ave</td>
<td>Chris Menchin</td>
<td>609.345.5222</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td>Czar Engineering</td>
<td>5014 Fernwood Avenue</td>
<td>Butch Czar</td>
<td>609.653.9445</td>
</tr>
<tr>
<td>MEP Engineering</td>
<td>Concord Engineers</td>
<td>2311 Atlantic Avenue</td>
<td>Eric Taggart</td>
<td>609.272.9620</td>
</tr>
</tbody>
</table>

END OF SECTION 000002
CREATES Lab Renovation

SECTION 000110 - TABLE OF CONTENTS

INSTRUCTIONS TO BIDDERS AND GENERAL CONDITIONS

Section I Instructions to Bidders 1 June 2018
Section II General Conditions 1 June 2018
Section III Construction Contract 1 June 2018
Allowance Authorization Form 1 June 2018
Allowance Charge Request Form 1 June 2018
Request for Information Form 1 June 2018
Change Order Request Form 1 June 2018
Change Order Form 1 June 2018
Hourly Labor Rate Breakdown Form 1 June 2018
Daily Job Report Form 1 June 2018
Application and Certificate for Payment Form (AIA G702) 1 June 2018
Attachment to G702 Certification For Payment 1 June 2018
Contractor’s Partial or Final Release And Waiver of Liens 1 June 2018
Rowan Tax Exempt Letter 1 June 2018
Consent of Surety Company to Final Payment (AIA G707) 1 June 2018

DIVISION 01 GENERAL REQUIREMENTS DATED

011000 Summary of Work 1 June 2018
011400 Work Restrictions 1 June 2018
012200 Unit Prices 1 June 2018
012300 Alternates 1 June 2018
012400 Procedures and Controls 1 June 2018
012500 Contract Modification Procedures 1 June 2018
012900 Payment Procedures 1 June 2018
013100 Coordination 1 June 2018
013200 Construction Progress Schedule 1 June 2018
013300 Submittal Procedures 1 June 2018
014000 Quality Control Requirements 1 June 2018
014100 Testing Services 1 June 2018
014200 Reference Standards 1 June 2018
015000 Construction Facilities & Temporary Controls 1 June 2018
017700 Contract Closeout 1 June 2018
017820 Operation and Maintenance Data 1 June 2018
018200 Demonstration and Training 1 June 2018

TECHNICAL SPECIFICATIONS

DIVISION 02 EXISTING CONDITIONS

024119 Selective Demolition 1 June 2018
DIVISION 03 – 05 NOT USED

DIVISION 06 WOOD, PLASTICS AND COMPOSITES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>061053</td>
<td>Miscellaneous rough Carpentry</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>

DIVISION 07 THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>072129</td>
<td>Spray Applied Acoustic Finish</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>075419</td>
<td>Polyvinyl-Chloride (PVC) Roofing</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>

DIVISION 08 OPENINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>084113</td>
<td>Aluminum-Framed Entrances and Storefronts</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>087100</td>
<td>Door Hardware</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>088000</td>
<td>Glazing</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>

DIVISION 09 FIISHES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>092216</td>
<td>Non-Structure Metal Framing</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessory</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>099600</td>
<td>High-Performance Coatings</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>

DIVISION 10 – 21 NOT USED

DIVISION 22 – PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>Common Work Results for Plumbing</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>220523</td>
<td>General Duty Valves for Plumbing Piping</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>220529</td>
<td>Hangers and Supports for Plumbing Piping and Equipment</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>220553</td>
<td>Identification for Plumbing Piping and Equipment</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>221123</td>
<td>Facility Natural Gas Piping</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>221513</td>
<td>General Service Compresses Air Piping</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>

DIVISION 23 - HEATING, VENTILATION AND AIR CONDITIONING (HVAC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>230500</td>
<td>Common Work Results for HVAC</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230518</td>
<td>Escutcheons for HVAC Piping</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230529</td>
<td>Hangers and Supports for HVAC Piping and Equipment</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230548</td>
<td>Vibration Isolation and Wind Load Restraints</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230553</td>
<td>Identification for HVAC Piping and Equipment</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230700</td>
<td>Mechanical Insulation</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230702</td>
<td>Acoustical Lining Insulation</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230900</td>
<td>HVAC Instrumentation and Controls</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>230993</td>
<td>Sequence of Operations for HVAC Controls</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>231123</td>
<td>Facility Natural Gas Piping</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>232300</td>
<td>Refrigerant Piping</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>232923</td>
<td>Variable Frequency Motor Controls</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
<td>1 June 2018</td>
</tr>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
<td>1 June 2018</td>
</tr>
</tbody>
</table>
233423 HVAC Power Ventilators 1 June 2018
233713 Diffusers, Registers and Grilles 1 June 2018
233816 Fume Hood Ductwork and Lab Oven Vents 1 June 2018
237414 Packaged Outdoor Rooftop Units 1 June 2018
238129 Variable Refrigerant Flow HVAC Systems 1 June 2018

DIVISION 24 – 25 NOT USED

DIVISION 26 – ELECTRICAL

260010 Electrical General Requirements 1 June 2018
260519 Low-Voltage Electrical Power Conductors and Cables 1 June 2018
260526 Grounding and Bonding for Electrical Systems 1 June 2018
260529 Hangers and Supports for Electrical Systems 1 June 2018
260533 Raceways and Boxes for Electrical Systems 1 June 2018
260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling 1 June 2018
260553 Identification for Electrical Systems 1 June 2018
262416 Panelboards 1 June 2018
262726 Wiring Devices 1 June 2018
262816 Enclosed Switches and Circuit Breakers 1 June 2018

DIVISION 27 – 29 NOT USED
ROWAN UNIVERSITY
SECTION I
INSTRUCTIONS TO BIDDERS

1B1. BID PROPOSALS

1B1.1. Sealed proposals for the work described herein must be received and time-stamped at the University. The closing date and time for bids will be stated in the Advertisement and Invitation to Bid. Bidders are cautioned that reliance of the U. S. Mail for timely delivery of proposals is at the bidder's risk. Failure by the contractor to have sealed proposals reach the University by the prescribed time will result in a return of the submission unopened and unread.

1B1.2. This contract will be bid as a single prime contract only. Bids for less than all of the project as described herein will be deemed nonconforming.

1B1.3. The Instructions to Bidders, Bid forms, Contract forms, plans and specifications, forms of Bid Bond, Agreement of Surety, Performance Bonds, Payment Bonds and other contract documents may be examined at the University. Contractors may obtain contract documents at the University's Purchasing Website. The University reserves the right to deny award to any bidder who is not clearly responsible based upon experience, past performance and financial capability to perform the work required hereunder or other material factors.

1B1.4. Set(s) of contract documents will be available for inspection by interested parties free of change in Rowan University’s Purchasing Department.

1B1.5. Bid proposals based upon the plans, specifications, general, special and supplementary conditions, clarifications and/or addenda shall be deemed as having been made by the contractor will full knowledge of all project conditions. Bidders are required to visit the site prior to submitting proposals for the work herein described and to have thoroughly examined the conditions under which the contract is to be executed including those reasonably observable conditions of the premises which would hinder, delay or otherwise affect the performance of the contractor required under the terms of the contract. The University will not allow claims for additional costs as a result of the contractor's failure to become aware of the reasonably observable conditions affecting his/her required performance. The bidder is required to make appropriate allowances in the preparation of his/her bid for the accommodation of such conditions. Bidders must warrant in the bid documents that the bidder is familiar with conditions existing at the site at the time the bid is submitted.

1B1.6. Bid proposals shall be submitted on the standard form provided by the University, enclosed in a sealed envelope issued by Rowan University. The name and address of the bidder must be indicated on the envelope as well as indication of the project, project location and other appropriate identification.

1B1.7. All amounts in the bid documents shall be stated in numerical figures only.

1B1.8. The bidder must include the following items in the bid envelope. Other documents may be required by the University Purchasing Department. Check the University’s website for further information on required documents.
ROWAN UNIVERSITY
SECTION I
INSTRUCTIONS TO BIDDERS

a. The proposal signed by the bidder;

b. The executed Affidavit of Non-collusion;

c. Bid security as further described in Paragraph 1B6;

d. The completed set of bid forms found after the Table of Contents;

e. The names and license numbers of and evidence of performance security form of all sub-contractors to who the bidder will sub-contract any of the work on the project for the following:

1) The plumbing and gas fitting work;

2) The heating and ventilating systems and equipment;

3) The electrical work including any electrical power plants;

4) The structural and ornamental iron work.

1B1.9. Proposals shall remain open for acceptance and may not be withdrawn for a period of sixty (60) days after the bid opening date.

1B1.10. Proposals not submitted and filed in accordance with instructions contained herein and in the Advertisement will be considered informal and rejected as non-responsive.

1B2. BID MODIFICATION

1B2.1. A bidder may modify his/her bid proposal by telegram or letter at any time prior to the scheduled closing time for receipt of bids provided such communication is received by the University prior to such closing time. A written confirmation of any telegraphic modification signed by the bidder must have been mailed and time-stamped by the post office prior to specified closing time. Such confirmation shall be accompanied by a newly executed Affidavit of Non-Collusion.

1B2.2. Telegraphic communications shall not reveal the basic bid price but only shall provide the amount to be added, subtracted or modified so that the final price(s) or term(s) will not be revealed until the sealed proposal is opened. If written confirmation of the telegraphic modification is not received within two (2) working days after the scheduled closing time, no consideration will be given to the telegraphic modification.

1B2.3. Bids may be withdrawn upon written request received from the bidder prior to the time fixed for the bid opening. Right for withdrawal of a bid is lost after a bid has been opened. If any error has been made in the bid amount, request for relief from the bid may be made in writing to the University. The written request shall be signed by an authorized corporate officer. A determination of whether the bidder will be released shall be at the sole discretion of the University who shall issue his/her finding(s) within five (5) days of his/her receipt of all pertinent information relating to such request for relief.

1B3. CONSIDERATION OF BIDS

1B3.1. Award of Projects (s) or Rejection of Bid(s):

a. The project will be awarded to the lowest responsible bidder whose bid, conforming to the Bidding Documents, will be most advantageous to the University. The award will be made or the bid(s) rejected within sixty (60) days from the date of the opening of the bids.
b. All bid deposits of unsuccessful bidders, except the lowest three (3) bidders, will be returned or refunded within five (5) days of the bid opening.

c. The bid security deposits of the successful bidder and the next two (2) lowest bidders will be retained by the University until the execution and delivery of a formal contract and delivery of performance and payment bonds by the bidder awarded the project. At such time, bid deposits of the other two (2) low bidders will be returned.

d. The University reserves the right to award the project on the basis of the single bid for the entire work on or the basis of a separate bid and alternate, or any combination of separate bids and alternates, which the University deems best serves the interest of the University.

e. The University reserves the right to waive, in his/her sole discretion, any bid requirements when such waiver is in the best interests of the University and where such waiver is permitted by law.

f. The University reserves the right to reject any and all bids when such rejection is in the best interests of the University. The University may also reject the bid of any bidder who, in its judgement, is not responsible or capable of performing the project based on financial capability, past performance or experience. A bidder whose bid is so rejected may request a hearing before the University by filing a written notice within seven (7) days of the transmittal of the rejection.

1B3.2. The bidder to whom the project is awarded shall execute and deliver the requisite contract documents including payment and performance bonds within the time specified. Upon his/her failure or refusal to comply in the manner and within the time specified, the University may either award the contract to the next low, responsible bidder or re-advertise for new proposals. In either case, the University may hold the defaulting bidder and his/her surety liable for the difference between the applicable sums quoted by the defaulting bidder and that sum which the University may be obligated to pay to the contractor who undertakes to perform and complete the work of the defaulting bidder.

1B4. AWARDS

1B4.1. In executing a contract, the successful bidder agrees to perform his/her work in a good and workmanlike manner and to complete portions of the work by established milestone dates and all work within the number of calendar days specified in his/her contract.

1B4.2. The successful bidder will be notified of the time and place for the signing of the contract. Key requirements in the conduct of the contract including, but not limited to, project milestones, the number of days for performance of the contract, manner and schedule of payments, site logistics and other administrative details will be reviewed at the award meeting. The time and place of the first job meeting will also be announced.

1B4.3. The project shall be awarded to the lowest responsible bidder whose bid, conforming to the Bidding Documents, will be the most advantageous to the University. Alternatives will be accepted or rejected as selected by the University. Add alternates and deduct alternates will be specified separately. The University may choose from the add and deduct alternates without priority between the two groups. The University
may accept alternates out of sequence provided it states its reasons for so doing.

1B4.4. Should submission of unit prices be required for specific items of work in bid proposals, they will be considered in the evaluation of bids.

1B4.5. LIQUIDATED DAMAGES ARE PART OF THIS PROJECT. Please refer to Section 017700 Contract Closeout in the Project Manual.

1B5. QUALIFICATIONS OF BIDDERS

1B5.1. If the successful bidder is a corporation not organized under the laws of the State of New Jersey, or is not authorized to do business in this state, the award of the project shall be conditioned upon the prompt filing by the said corporation of a certificate to do business in this state and shall comply with the laws of this state in that regard. This filing must be made within the Department of State. No award of project will be made until the Department of State confirms this authorization.

1B5.2. The University requires that each contractor shall perform a minimum of thirty-five percent (35%) of the contract work by his/her own forces. The University, however, may, in its sole discretion, reduce this percentage depending upon the nature and circumstances in any particular case if he/she determines that to do so would be in the best interests of the University provided that a written request is submitted to him/her with the original bid proposal.

1B5.3. The University reserves the right to reject a bidder at any time prior to the signing of a contract if information or data is obtained which, in the opinion of the University, adversely affects the responsibility and/or the capability of the bidder to undertake and to complete the work regardless of the bidder's previous qualification or classification. The University may conduct any investigation as it deems necessary to determine the bidder's responsibility and capacity and the bidder shall furnish all information and data for this purpose as the University may request.

1B5.4. The bidder shall include a list of the sub-contractors to whom the bidder will sub-contract work with his/her bid for:

a. the plumbing and gas fitting work;
b. the heating and ventilating systems and equipment;
c. the electrical work including any electrical power plants;
d. the structural and ornamental iron work; and
e. special categories as may be required.

1B6. DEPOSIT AND BID BOND

1B6.1. Each proposal shall be accompanied by a bid bond or by a certified or cashier's check made payable to the University equal to ten percent (10%) of the amount of the proposal as evidence of good faith which guarantees that, if the proposal submitted by the bidder is accepted, the bidder will enter into the contract and furnish the required contract documents and surety bonds. If a bid bond is submitted, it shall also provide that the surety issuing the bid bond be bound to issue the required payment and performance bonds if the bidder is awarded the project. If the bidder
whose proposal is accepted is unable to provide the performance and payment bonds or fails to execute a contract, then such bidder and the bid bond surety shall be obligated to pay to the University the difference between the amount of the bid and the amount which the University contracts to pay another party to perform the work. The University reserves the right to retain any certified or cashier's check deposited hereunder as reimbursement for the difference as aforesaid and shall return any non-required balance to the bidder. Should there be a deficiency in the excess of the bid deposit, the bidder and the surety shall pay the entire amount of the University's difference in cost upon demand. Nothing contained herein shall be construed as reason of a default or breach by the contractor. Certified or cashier's checks or bonds submitted by the unsuccessful bidders will be returned after the contract has been executed. Contractors electing to furnish a bid bond must include consent of surety, both in form acceptable to the University.

1B6.2. Attorneys-in-fact who sign bid bonds or contract bonds must file a certified power of attorney with the University indicating the effective date of that power.

1B7. PERFORMANCE AND PAYMENT BONDS

1B7.1. Within five (5) calendar days, the successful bidder shall furnish a performance bond in statutory form in an amount equal to one hundred percent (100%) of the total contract price as security for the faithful performance of this contract and also a payment bond in statutory form in an amount equal to one hundred percent (100%) of the contract price as security for the payment of all persons and firms performing labor and furnishing materials in connection with this contract. The performance and payment bond may be in one or in separate instruments in accordance with the law. No contract shall be executed unless and until each bond is submitted to and approved by the University and the surety must be presently authorized to do business in the State of New Jersey. The surety's obligation shall continue beyond final acceptance to the extent that the contractor would have such an obligation.

1B7.2. The cost of bonds shall be paid for by the contractor.

1B7.3. At any time, if the University is dissatisfied with any surety or sureties, who have issued or proposed to issue, the performance or payment bonds for justifiable cause, the contractor shall substitute an acceptable bond or bonds in such form and sum and executed by such other surety or sureties as may be satisfactory to the University within ten (10) days after notice from the University to do so. The premiums of such bonds shall be paid by the contractor. No contract shall be executed and/or no payment made under a contract until the new surety or sureties shall have furnished such an acceptance bond to the University.

1B7.4. Bonds must be legally effective as of the date the contract is signed. Bonds must indicate contractor's names exactly as they appear on the contract. Current attorney-in-fact instruments and financial statement of the surety must be included with the bond. Bonds must be executed by an authorized officer of the surety. Bonds furnished under this article shall conform in all respects to the requirements and language of N.J.S.A. 2A:44-143 to 147.

1B8. BULLETINS AND INTERPRETATIONS
1B8.1. No interpretation of the meaning of the plans, specifications or other pre-bid documents will be provided to any bidder unless such interpretation is made in writing to all prospective bidders prior to the bid opening. Any such interpretations must be identified in bid proposals submitted. Any interpretations which are not entered in accordance with this provision shall be unauthorized and not binding upon the University.

1B8.2. Every request for an interpretation relating to, clarification or correction of the plans, specifications or other bid documents shall be made in writing addressed to the University and must be received at least five (5) working days prior to the date fixed for the bid opening. Any and all interpretations, clarifications or corrections and any supplemental instructions must be issued by the University in writing in the form of bulletins and mailed by certified mail, return receipt requested or by telegraphic notice to all prospective bidders no later than three (3) working days prior to the date of the bid opening. All bulletins issued shall become part of the contract documents and shall be acknowledged in all the bid proposals. Failure of a contractor to acknowledge receipt of all such bulletins and interpretations by the time of the bid opening shall result in his/her proposal being considered non-responsive at the option of the University.

1B8.3. Each bidder shall be responsible for thoroughly reviewing the contract documents prior to submission of bids. Bidders are advised that no claim for expenses incurred or damage sustained on account of any error, discrepancy, omission or conflict in their bid submission will be entertained. Documents shall be recognized by the University unless, and only to the extent that, a written request for interpretation, clarification or correction has been submitted in compliance with section 1B8.2 and the matter has not been addressed by the University through the issuance of a bulletin interpreting, clarifying and/or correcting such error, discrepancy, omission or conflict.

1B9. ASSIGNMENTS

1B9.1. The contractor shall not assign the whole or any part of this contractor without prior written consent of the University. Money due or to become due to the contractor hereunder shall not be assigned for any purposes whatsoever.

1B10. FEDERAL EXCISE TAXES AND STATE SALES TAX

1B10.1. In general, bidders must take into consideration applicable Federal and state tax laws when preparing their bids.

1B10.2. Under Chapter 32 of the Internal Revenue Code, an exemption certificate must be on file with the University of the Division of purchase and Property. (example, Number 22-75-005)

1B10.3. Materials, supplies or services for exclusive use in erecting structures or buildings or otherwise improving, altering or requiring all University-owned property are exempt from the State sales tax.

1B10.4. Bidders must make their own determinations as to the current status and applicability
of any tax laws and the contractor may make no claim based upon any error or misunderstanding as to the applicability of any tax laws.

1B10.5. Purchases or rentals of equipment are not exempt from any tax under the State Sales Tax Act.

1B11. RESTRICTIVE SPECIFICATIONS

1B11.1. Should any bidder determine before the bid due date that any portion of the specifications or drawings specify a particular product which can be provided by one (1) supplier or manufacturer with the result that competitive prices are not available, he/she shall immediately notify the University and Construction Manager of the fact in writing.

1B11.2. If such notice is not given in a timely manner, it shall be assumed that the bidder has included the estimate of such sole source in his/her bid. In the alternative, if the University or Construction Manager are notified in a timely manner of the requirement in the specification of a sole source of supply or manufacture, the University may order the project rebid or may take any other lawful action.

1B12. OFFER OF GRATUITIES

1B12.1. Chapter 48 of the laws of 1954 make it a misdemeanor to offer, pay or give any fee, commission, compensation, gift or gratuity to any person employed by the State. It is the policy of the University to treat the offer of any gift or gratuity by any company, its officers or employees to any person employed by Rowan University as grounds for debarment or suspension of such company from bidding on and providing work or materials on University contracts.

END OF SECTION I
ARTICLE 1 - CONTRACT DOCUMENTS

1.1 DEFINITIONS

1.1.1 "Architect" or "Engineer" means the Architect, Engineer or other design professional engaged by the University to work under the direction of the University's project manager or contracting officer.

1.1.2 Where "as shown", "as indicated", "as detailed" or words of similar import are used, it shall be understood that the reference is made to the drawings accompanying this contract unless otherwise stated. The word "provided", as used herein, shall be understood to mean "provided complete in place", that is, "furnished and installed".

1.1.3 Bulletin or Addendum: The bulletin or addendum is a document issued by the University prior to opening of bids which supplements, revises or modifies the solicitation documents furnished for bidding purposes.

1.1.4 Change Order Request Form: A request for equitable adjustment made by the Contractor in response to written direction by the contracting officer pursuant to Article 14 entitled "Changes to Contract". Unless otherwise specified by the University, the Contractor shall use Form AIG701.

1.1.5 Claims: Differences between the University and a contractor concerning extra work, alleged errors or omissions in the specifications or drawings, unreasonable delays, damages to work, informal suspensions or interferences by University personnel and like matters.

1.1.6 University: The word "University" or "owner" as used herein refers to Rowan University.

1.1.7 University's project manager: An employee of the University (the University's project manager) to provide general administration and project management services as required by the contract documents.

1.1.8 Contract Documents: This contract, together with any plans, drawings, specifications or other documents which are attached hereto or incorporated herein by reference, together with any such plans, drawings, specifications, schedules or other documents which may be produced pursuant to this contract or derived there from and which are intended to bind the contractor hereunder.

1.1.9 Contract Limit Lines: Those lines shown on the drawings which limit the boundaries of the project and beyond which no construction work or activities shall be performed by the contractor unless otherwise noted on the drawings or
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

specifications.

1.1.10 **Contract Line Item Number (CLIN):** A specifically described unit of work for which a price is provided in the contract.

1.1.11 **Contractor** means the person or persons, partnership or corporation named as contractor in this contract operating as an independent contractor and not as an agent of the State in the performance of its functions. Whether referred to as "contractor", "prime contractor", "prime", "separate contractor" or "single contractor", it shall be understood to mean contractor. It does not include suppliers or material men.

1.1.12 **Contracting Officer** means the individual authorized, as an officer of the University, to administer the design, engineering and construction of all University buildings and facilities. He/she is the procuring contracting officer representing the University personally or through University's project managers in all relationships with contractors, consultants and architects/engineers. This includes a duly appointed successor or an authorized administrative contracting officer (ACO) acting within the limits of his/her authority.

The contracting officer is the interpreter of the conditions of the contract and the judge of its performance. He/she shall not take arbitrary positions benefiting either the University or the contractor but shall use his/her powers under the contract to enforce its faithful performance by both.

1.1.13 Wherever in the specifications or upon the drawings the words "directed", "required", "ordered", "designated", "prescribed" "shall" or words of like import are used, it shall be understood that the "direction", "requirement", "order", "designation" or "prescription" of the contracting officer is intended and similarly the words "approved", "acceptable", "satisfactory" or words of like import shall mean "approved by", "acceptable to" or "satisfactory to" the contracting officer unless otherwise expressly stated.

1.1.14 **"Final Acceptance"** shall mean the acceptance of the Project upon Final Completion.

1.1.15 **"Final Completion"** shall mean the date the project, including all punch list items properly performed by the contractor, all warranties have been transferred to the University and the Contractor has demobilized from the site.

1.1.16 **General Construction Contractor:** The general construction contractor means either the contractor for general construction whenever separate prime contractors are involved in a project or the sole contractor if there are no other prime contractors involved.

1.1.17 **Notice** is a written directive or communication served on the contractor to act or perform work or carry out some other contractual obligation. It shall be deemed to have been duly served if delivered to an individual or member of the firm or entity or to an officer of the corporation for whom it was intended. This includes delivery by
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

courier, registered or certified mail, telegram, facsimile, E-mail or other electronic means to the business address cited in the contract documents.

1.1.18 Plans means any drawings or reproductions thereof pertaining to the details of the work contemplated by this contract.

1.1.19 Project is the general term for identification of the total contract. It includes the work and all administrative aspects required to fully satisfy the contract requirements.

1.1.20 Public Contract: Any contract or agreement entered into by the State of New Jersey or any instrumentality of the State, including Rowan University, to purchase goods, services or both.

1.1.21 The term site, construction site or project site refers to the geographical area of the entire University campus at which the work under the contract is to be performed bounded by the Contract Limits and other areas designated by the University.

1.1.22 Specifications means all written agreements, instructions or other documents in or pursuant to this contract pertaining to the method of performing the work and the results to be obtained.

1.1.23 The words State or Agency of the State, as are used herein, mean the State of New Jersey or any department or agency of the State.

1.1.24 Sub-contractor means the person or persons, partnerships or corporations who enter into a contract with the contractor for the performance of work under this contract or the sub-contractors of any tier of such individual or corporation.

1.1.25 Substantial Completion: The date the building or facility is operational or capable of serving its intended use even though all permanent installations are not in place. The determination as to the date of substantial completion shall be made pursuant to Article 8.3 of the General Conditions and other applicable Sections in the Project Manual.

1.1.26 Schedule of Values shall mean a detailed list of the work activities required for project construction; including costs allocated thereto to be utilized by the Architect/Engineer in progress payments. The schedule of values shall include all elements associated with fulfilling the requirements of the contract; bonds, insurance, etc.; major items of material or equipment.

1.1.27 The term work, as used herein, comprises all construction efforts required by the contract documents and all supervision, labor, material, management and equipment necessary to complete such construction.

1.2 INTENT OF THE CONTRACT

1.2.1 The drawings and specifications of the contract are intended to require the contractor to provide for everything necessary to accomplish the proper and
complete finishing of the work. All work and materials included in the specifications and not shown on the drawings or shown on the drawings and not in the specifications shall be performed or furnished by the contractor as if described in both. Any incidental material and/or work not specified in the drawings and/or specifications which is, nevertheless, necessary for the true development thereof and reasonably inferable there from, the contractor shall understand the same to be implied and required and he/she shall perform all such work and furnish all such materials as if particularly delineated or described therein. Should there be an obvious error or omission in the drawings or specifications, it shall be the contractor's responsibility to complete the work as reasonably required consistent with the intent of such drawings and specifications.

1.2.2 The contractor shall abide by and comply with the true intent and meaning of the drawings, the specifications and other contract documents taken as a whole and shall not avail himself/herself of any unintentional error or omission should any exist. Should any error, omission or discrepancy appear or should any doubt exist or any dispute arise as to the true intent and meaning of the drawings, the specifications or other contract documents, or should any portion thereof be obscure or capable of more than one interpretation, the contractor shall immediately notify the contracting officer or the University's project manager and seek correction or interpretation thereof prior to commencement of affected work. The contracting officer shall issue his/her interpretation with reasonable promptness. However, the contractor shall make no claim against the University for expenses incurred or damages sustained on account of any error, discrepancy, omission or conflict in the contract documents unless, and only to the extent that, the contractor has submitted a written request for interpretation, clarification or correction to the Architect/Engineer and the contracting officer through the University's project manager and such written request has been received by the Architect/Engineer and the contracting officer at least five (5) working days prior to the date fixed for the opening of bids provided further that such claim shall only be recognized by the University if the matter raised by the written request has not been addressed by the University through the issuance of an addendum interpreting, clarifying and/or correcting such error, discrepancy, omission or conflict. In case of dispute, the matter shall be referred to the contracting officer for decision.

1.2.3 Each and every provision required by law to be inserted in the contract documents shall be deemed to have been inserted therein. If any such provision has been omitted or has not been correctly inserted, then, upon application of either party, the contract shall be physically amended to provide for such insertion or correction.

1.2.4 The organization of the specifications into divisions, sections and articles and the arrangement of drawings shall not be construed by the contractor as being intended to divide or allocate the work among sub-contractors in any manner or to establish the extent of the work to be performed by any trade.

1.2.5 N/A

1.2.6 The contractor shall do no work without proper drawings and instructions unless
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

authorization to proceed from the contracting officer or someone designate by the contracting officer is received in writing by the contractor. In giving such additional instructions, the contracting officer may make minor changes in the work not involving extra cost.

1.2.7 All drawings referred to, together with such supplementary details as may be furnished and approved from time to time as the work progresses, are understood as being included as part of the contract to which they relate.

1.2.8 In the event of a conflict between provisions of the contract documents, the documents shall take precedence in the following order:

(a) Executed Contract
(b) Addenda
(c) Supplemental General Conditions
(d) General Conditions
(e) Specifications
(f) Drawings in the following order of precedence:
 (1) notes on drawings
 (2) large scale details
 (3) figured dimensions
 (4) scaled dimensions

Where there may be a conflict not resolvable by application of the provisions of this paragraph, then the contractor shall accept the condition more favorable to the University. In the event the conflicting condition is one of physical materials, equipment and/or labor then the more expensive labor, materials or equipment shall be assumed to be required and shall be provided by the contractor.

1.2.9 On all work involving alterations, remodeling, repairs or installation within existing buildings, it shall be the responsibility of the contractor by personal inspection of the existing building, facility, plant or utility system to satisfy himself/herself as to the accuracy of any information given which may affect the quantity, size and/or quality of materials required for a satisfactorily completed contract whether or not such information is indicated on the drawings or is included in the specifications. All contracts shall include the cost of all material and labor required to complete the work.

1.2.10 Dimensions of the work shall not be determined by scale or rule and figured dimensions shall be followed at all times unless obvious discrepancies exist. The contractor shall verify all dimensions at the job site and shall take any and all measurements necessary to verify the drawings and to properly lay-out the work. Any discrepancies affecting the lay-out of the work shall be called to the Architect's/Engineer's attention. No work so affected shall proceed until such discrepancy is corrected and the Architect/Engineer provides written confirmation of the resolution to the University's project manager.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

1.2.11 Where on any drawing a portion of the work is fully drawn and the remainder is indicated in outline form, the portions fully drawn shall apply to all other like portions of the work unless specifically indicated or specified otherwise.

1.2.12 All indications or notations which apply to one of a number of similar situations, materials or processes shall be deemed to apply to all such situations, materials or processes whether they appear in the work except where a contrary result is clearly indicated by the contract documents.

1.2.13 Where codes, standards, requirements and publications of public and private bodies are referred to in the specifications, references shall be understood to be to the latest revision prior to the date of receiving bids except where otherwise indicated.

1.2.14 Where no explicit quality or standards for materials or workmanship are established for work, such work is to be of good quality for the intended use.

1.2.15 All manufactured articles, materials and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned in accordance with the manufacturer's written or printed directions and instructions unless otherwise indicated in the contract documents.

1.2.16 The mechanical, electrical and fire protection drawings are diagrammatic only and are not intended to show the alignment, physical locations or configurations of such work. Such work shall be coordinated by the Contractor and shall be installed to clear all obstructions, permit proper clearances for the work of other trades, satisfy all code requirements and present an orderly appearance where exposed at no additional cost to the Owner.

ARTICLE 2 - CONTRACTING OFFICER

2.1 CONTRACTING OFFICER'S RIGHT TO STOP THE WORK

2.1.1 If the contractor fails to correct defective work or fails to carry out the work in accordance with the contract documents, the contracting officer may order the contractor to stop the work, or any portion thereof, until the cause for such order has been eliminated. Stoppage of the work, however, shall not render the University liable for claims of any kind, including delays sustained by the contractor as the result of the stoppage of the work and there shall be no extension of time to the schedule allowed.

2.2 CONTRACTING OFFICER'S RIGHT TO TERMINATE FOR CAUSE

2.2.1 If the contractor makes a general assignment for the benefit of his/her creditors, if a receiver is appointed on account of his/her insolvency or if he/she persistently or repeatedly refuses or fails, except in cases for which extension of time is provided, to supply enough properly skilled workers or proper materials so as to avoid or eliminate delays in the orderly progress of the work in accordance with the
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

approved schedule, of if he/she fails to make prompt payment to sub-contractors or for materials or labor, or persistently disregards laws, ordinances, rules, regulations or orders of any public authority having jurisdiction, or if he/she or any of his/her sub-contractors is guilty of a substantial violation of a provision of the contract documents or otherwise defaults or neglects to carry out the work in accordance with the contract documents, then the contracting officer may, without prejudice to any right or remedy and, after giving the contractor and his/her surety three (3) working days written notice to forthwith commence and continue correction of such default or neglect with diligence and promptness, terminate the employment of the contractor by the issuance of a written notice to that effect to the contractor and his/her surety at any time subsequent to three (3) working days thereafter should they, or either of them, fail to comply with the demands of the original three (3) day notice as mentioned above.

2.2.2 Upon such termination, the contracting officer may take possession of the site and of all the materials, equipment and tools on the site and may finish the work by whatever method he/she may deem expedient. In such case, the contractor shall not be entitled to receive any further payment until the work is finished. The person or firm designated to carry out such work will be paid as authorized by the contracting officer without entailing any personal liability upon the officers of the University issuing certificates or making such payment(s).

2.2.3 If the unpaid balance of the contract sum exceeds the cost of finishing the work, including liquidated damages for delays and all consequential damages sustained by the University flowing from such breach of contract, such excess shall be paid to the contractor. If such costs exceed the unpaid balance, the contractor and/or his/her surety shall pay the difference to the University promptly upon demand and this obligation shall survive the termination of the contract.

2.2.4 If, within three (3) working days following receipt of notice of termination by the contractor's surety, the issuer of the performance and payment bonds, the said surety exercises its right to take over the work and expeditiously commences to prosecute the same to completion, the contracting officer shall permit him/her to do so under the following terms and conditions:

(a) evidence of the surety's intention to take over and complete the contract shall be in writing over the signature of a University project manager and served upon the contracting officer within three (3) days after receipt by the surety of notice of termination

(b) the execution of a written agreement between the University, by the contracting officer, and the surety whereby the latter undertakes and assumes the obligation to complete the balance of the work of its defaulting contractor in accordance with the terms and conditions of the University contractor agreement, to be performed by a substituted contractor satisfactory to the contracting officer, at the surety's sole cost and expense, and providing for payments to the surety or to the substituted contractor of unpaid contract balances, if any, then in the hands of the University
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

(c) the said agreement shall also expressly provide that the surety shall not be relieved thereby from any of its obligations under the performance and payment bonds and that it furnishes the University with an additional performance and payment bond to secure the faithful performance of the substituted contractor

(d) that all current obligations for labor and materials incurred and outstanding by the defaulting contractor on this project be paid without delay, subject to allowance of a reasonable time within which to verify such claims by the surety

(e) that the parties expressly understand and agree that this agreement is without prejudice and is subject to such rights and remedies as either party, including the contractor, may elect to assert after final completion and acceptance of the work

2.2.5 Right to Terminate for Convenience: The contracting officer reserves the right to terminate for the convenience of the University in which case the contractor shall be entitled to a proportion of the fee for which the services actually and satisfactorily performed by the contractor shall bear to the total services contemplated under this agreement, less payments previously made, together with appropriate reimbursable costs and a reasonable termination fee to be negotiated between the contractor and the contracting officer.

2.3 REVIEW OF CONTRACTOR CLAIMS AND DISPUTES

2.3.1 In the event of a dispute other than a Change Order dispute between the Contractor and the University, the Contractor may request, in writing, a hearing of any claim, dispute or matter in question relating to this contract. The University shall then designate a Hearing Officer, who may be the University's designee under this contract. The Hearing Officer shall not side with the University or the Contractor but shall use his/her powers to enforce faithful performance by all.

2.3.1.1 The Hearing Officer shall permit both the Contractor and the University to provide such relevant information to the Hearing Officer and each other, as the Hearing Officer needs to render a decision. Upon rendering a decision, the Hearing Officer will memorialize that decision in writing.

2.3.1.2 In the event that both the Contractor and the University agree with the Hearing Officer's decision, each will acknowledge its acceptance in writing.

2.3.1.3 In the event that the dispute is not resolved as set forth in Paragraph 2.3.1.2 hereof, then the University shall review all information provided to the Hearing Officer pursuant to Paragraph 2.3.1.1 hereof and the finding of the Hearing Officer and shall issue a final decision which shall be reduced to writing and a copy provided to the University's designee and the Contractor.

2.3.1.4 Pending such final decision, the Contractor shall have no recourse to court actions, assuming that the aforesaid administrative procedures take place within a reasonable amount of time. Upon receipt of the final decision, either party may then commence appropriate legal proceedings.

2.3.1.5 Unless and until it is determined as a result of any legal proceedings that
the University is in material breach of this contract the Contractor shall proceed diligently with the performance of its contract responsibilities.

2.4 UNIVERSITY REPRESENTATION

2.4.1. The University shall be represented on the site by a University's project manager. The University's project manager will conduct or contract out on-site inspections, maintenance of logs for construction progress and problems encountered, approval of contractor's requisition for payments subject to final approval by the Architect and contracting officer, attendance at job meetings, the act of liaison with the Architect/Engineer and contractor, preparation and submission of reports on special problems associated with the job, evaluation and processing change orders and generally remain fully cognizant and be kept informed by the contractor of every aspect of ongoing construction. The University's project manager will have only those duties, which are required of an owner. Responsibility for completion of this project, pursuant to the contract documents, remains with the contractor. No right of the University exercised hereunder shall be considered a waiver of the contractor's obligation or any obligations created by this agreement, which may be modified or excused only in accordance with the terms of the contract.

ARTICLE 3 - ARCHITECT/ENGINEER AND CONSTRUCTION MANAGER

3.1 ARCHITECT/ENGINEER

3.1.1 The Architect's/Engineer's has no power or authority to approve changes to the work under this contract and its role is that of consultant to the University.

3.2 ADMINISTRATION OF THE CONTRACT

3.2.1 The Architect/Engineer and the University's project manager will provide a certain portion of the administration of the contract as hereinafter described.

3.2.2 The Architect/Engineer and the University's project manager will monitor the execution and progress of the work and will immediately notify the University of any related problems. The Architect/Engineer and the University's project manager will be provided access to the work at all times. The general contractor shall provide facilities for such access so as to enable the Architect/Engineer and the University's project manager to perform their functions under the contract documents.

3.2.3 The Architect/Engineer and/or the University's project manager will not be responsible for, nor will they have control or charge of, construction means, methods, techniques, sequences of procedures or safety precautions and programs in connection with the work. The Architect/Engineer and/or the University's project manager will not be responsible for, nor have control or charge over, the acts or omissions of the contractor, sub-contractors or any of their agents or employees or any other person performing any of the work but shall have the obligation to immediately inform the contractor, and the contracting officer of any inadequate performance on the project.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

In the event that the University's project manager notices any safety violations, the University's project manager shall have the right, but not the obligation, to inform the Contractor and to immediately stop work for any imminent or life threatening danger.

3.2.4 The University's project manager, after consultation with the Architect/Engineer, will recommend the rejection of work, which he/she believes does not conform to the contract documents. In his/her opinion, whenever he/she considers it necessary or advisable, he/she may request the contracting officer to provide special inspection or testing of the work whether or not such work has been fabricated, installed or completed. The Contractor shall pay for all such testing whether the work is deemed to conform to the contract document or not.

3.2.5 Both the Architect/Engineer and the University's project manager will periodically review the contractor's as-built drawings to determine whether these are up-to-date.

3.3 INSPECTIONS - SUBSTANTIAL AND FINAL COMPLETION

3.3.1 The Architect/Engineer and the University's project manager will conduct inspections, accompanied by the contractor to determine the dates of substantial and final completion. The Architect/Engineer and the University's project manager will receive and forward written warranties and related documents required by the contract documents and assembled by the contractor to the contracting officer for his/her review. The Architect/Engineer and the University's project manager will approve the issuance of a certificate of final completion.

3.4 OWNERSHIP AND USE OF DOCUMENTS

3.4.1 All drawings, specifications and copies thereof furnished to the Contractor by the Architect/Engineer are and shall remain the property of the University. They are reserved to this project only and are not to be used on any other project. Submission or distribution of documents to meet official regulatory requirements or for any other purposes in connection with the project shall not be construed as derogation of the Architect's/Engineer's copyright or other reserved rights.

3.5 UNIVERSITY'S PROJECT MANAGER

3.5.1 In addition to the duties specified elsewhere in the contract documents, the University's project manager and the contractor shall perform as follows in relation to one another:

a) the contractor will permit the University's project manager to inspect delivery of any off-site materials that are being requisitioned by the contractor;
b) upon request by the University's project manager, the contractor will schedule visits to fabrication plants to inspect the status of various fabricated materials with regard to quality and scheduled delivery; the contractor will allow the University's project manager access to such facilities;
c) the contractor will attend a Preconstruction conference and bi-weekly project
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

meetings, or more often if necessary, at times and locations specified by the University's project manager;

d) the contractor shall submit to the contracting officer, through the University's project manager, all information or requests concerning scheduling, contract or change order/claims;

e) the University's project manager will receive, log, transmit and evaluate any requests from the contractor for interpretations of the meaning and intent of the contract documents to the contracting officer and Architect/Engineer;

f) the University's project manager will monitor all training by the contractor of owner's representatives for equipment and maintenance procedures.

ARTICLE 4 - THE CONTRACTOR

4.1 REVIEW OF CONTRACT

4.1.1 The contractor has the duty and warrants and represents that he/she has thoroughly examined and is familiar with all the contract documents including, but not limited, the complete set of drawings and specifications of the entire project; all other documents referred to in the advertisement for bids, the specifications, or otherwise; that he/she has noted cases where it is specified that certain work or materials, or both, are to be omitted from the contract and to be furnished or installed by another; that he/she has carefully examined the site and the contract; that from his/her own investigations, he/she has satisfied himself/herself as to the nature and location of the work, the current local equipment labor and material conditions and all matters which may, in any way, affect the work or its performance. The contractor is responsible to check and verify all conditions inside and outside the contract limit lines to determine whether any conflict exists with the work he/she is required to perform under the contract. The submission of a bid is conclusive evidence that the bidder has made such examination and is fully aware of the conditions to be encountered in performing the work including any subsurface condition which could be ascertained by due diligence and as to the requirements of the contract documents. This includes a verification of all elevations, utility locations and other site data. Within the site of the project, there may be public utility structures and, notwithstanding any other clause or clauses of this contract, the contractor shall not proceed with the work until he/she has made diligent inquiry at the utility companies and municipal authorities or other owners to determine their exact location. The contractor shall notify the utility companies and municipalities or other owners involved in writing of the nature and scope of the project and of his/her operation that may affect their facilities or property. The contractor is directed to the fact that the approximate locations of known utility structures and facilities that may be encountered within and adjacent to the limits of the work may be shown on the plans. The accuracy and completeness of this information is not guaranteed by the State and the contractor is advised to ascertain for himself/herself all the facts concerning the location of these utilities. The contractor shall carry out his/her work carefully and skillfully and shall support and secure utility structures so as to avoid damage to them. It is understood and agreed that the contractor has considered all of the permanent and temporary utility facilities in their present and/or relocated positions as shown on the plans and as revealed by
his/her site investigation in his/her bid, is cognizant of the limited ability of the State to control the actions of the utilities and has made allowance for the fact that additional compensation will not be allowed for any delays, inconvenience or damage sustained by him/her due to any interference from the said utility facilities or the operation of moving them in his/her bid. As a result of such examination and investigation, the contractor warrants and represents that he/she fully understands the intent and purposes of the contract documents and his/her obligations there under and that he/she accepts responsibility for and is prepared to execute and fulfill completely by his/her construction work the intent of the contract without exception and without reservation at the price specified in the contract.

4.1.2 The contractor shall carefully study and compare the contract documents during the progress of the work and shall immediately report any error, inconsistency or omission to the University's project manager upon discovery. The contractor shall immediately report any error, inconsistency or ambiguity detected during the course of the project to the University's project manager and shall do no work thereafter which may be affected by such error until the contracting officer, through the University's project manager, has had the opportunity to respond and clarify the work it wants performed in view of this information. Wherever any error, inconsistency or omission appears, it shall be disposed of pursuant to appropriate procedures set forth elsewhere herein.

4.1.3 Unless otherwise ordered in writing by the contracting officer through the University's project manager, the contractor shall perform no portion of the work without approved change orders, approved shop drawings or samples for such portions of the work or other approvals as may be applicable and required by the contract documents.

4.1.4 Unless otherwise provided in the contract documents, the contractor shall provide and pay for all labor, equipment, materials, tools, construction equipment and machinery, water, heat, utilities, transportation and other facilities and services necessary for the proper execution and completion of the work whether or not incorporated or to be incorporated in the work.

4.1.5 At all times, the contractor shall enforce strict discipline and good order among his/her employees and shall not employ any individual who violates these provisions or is unfit or anyone not skilled in the task assigned to him/her on the work.

4.1.6 The contractor shall be obligated to pay the prevailing wage rates set forth in the specifications. He/she shall abide by the requirements of the State's Affirmative Action Program. He/she shall also be responsible to ensure that all principles of safety are carried out as further described in Article 12 herein. The contractor shall prepare certified payrolls and shall submit such records to the University as required by New Jersey statute and corresponding regulations.

4.2 NEW JERSEY PREVAILING WAGE ACT

4.2.1 Each contractor or any sub-contractor shall comply with the New Jersey Prevailing
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

Wage Act Laws of 1963, Chapter 150, and all amendments thereto as this Act is hereby made a part of every contract entered into on behalf of the University except those contracts which are not within the contemplation of the Act. Provisions of the Act include:

a) All workmen employed in the performances of every contract in which the contract sum is in excess of $2,000 and work to which the University is a party shall be paid not less than the prevailing wage rate as designed by the Commissioner of Labor and Industry or his/her duly University's project manager.

1. The contractor and all sub-contractor(s) performing public work for the University who are subject to the provisions of the Prevailing Wage Act shall post the prevailing wage rates for each craft and classification involved as determined by the Commissioner, including the effective date of any changes thereof, in prominent and easily accessible places at the site of the work or at such place or places as are used by them to pay workmen/workwomen their wages.

2. The contractor's signature on the proposal is his/her guarantee that neither he/she nor any sub-contractor is currently listed or is on record by the Commissioner as one who has failed to pay the prevailing wages according to the Prevailing Wage Act.

b) In the event it is found any workman/workwoman employed by the contractor or any sub-contractor covered by the contract in excess of $2,000 for any public work to which the University is a party has been paid a rate of wages less than the prevailing wage required to be paid by such contract, the contracting officer may terminate the contractor's or sub-contractor's right to proceed with the work or such part of the work as to which there has been a failure to pay required wages and may otherwise prosecute the work to completion.

c) Nothing contained in the Prevailing Wage Act shall prohibit the payment of more than the prevailing wage rate to any workman/workwoman employed on a public work.

4.3 SUPERVISION AND CONSTRUCTION PROCEDURES

4.3.1 The contractor shall supervise and direct the work using his/her best skill and attention and coordinate his/her work with his/her sub-contractors. He/she shall be solely responsible for all construction means, methods, techniques, sequences and procedures and for coordinating all portions or the work under the contract.

4.3.2 The contractor shall employ a full-time, competent superintendent and necessary foreperson and assistants who shall be in attendance on the project site at all times during the progress of the work. The superintendent shall represent the contractor and all communications given to the superintendent shall be as binding as if given to the contractor. Important communications shall be confirmed in writing. The University reserves the right to require a change in a superintendent if his/her performance, as judged by the contracting officer, is deemed to be inadequate. Upon application in writing to the contracting officer, this requirement for a full-time
superintendent may be waived by the contracting officer should he/she determine that such staffing is not required by the University.

4.3.3 The contractor shall hire qualified, able crafts persons in their respective lines of work.

4.3.4 The various sub-contractors shall have competent superintendents and/or forepersons in charge of their respective portions of the work at all times. They shall not employ a person unfit or unskilled in the work assigned to him/her. If it should become apparent to the University or its consultant that a sub-contractor does not have his/her portion of the work under control of a competent foreperson, the contractor shall take appropriate steps to immediately provide proper supervision.

4.3.5 If due to a trade agreement or otherwise stand-by personnel are required to supervise equipment installation or for any other purpose during normal working hours of other trades, the contractor shall valuate and include the costs thereof in his/her bid price and shall provide said services without additional charge.

4.3.6 The contractor shall give the Architect/Engineer timely notice of any additional drawings, specifications or instructions required to define the work in greater detail or to permit the proper progress of the work.

4.3.7 The contractor shall correct all work incorrectly done at the contractor's own expense.

4.4. RESPONSIBILITY FOR THE WORK

4.4.1 The contractor shall be responsible to the University, the contracting officer, the University's project manager, the Architect/Engineer and to separate contractors having a contract with the University on this project for the acts and omissions of his/her employees, sub-contractors and their agents and employees which injure, damage or delay such other contractors in the performance of their work. This responsibility is not limited by the applicable provisions stated elsewhere herein but is in conjunction with and related thereto.

4.4.2 The contractor shall be responsible for all damage or destruction caused directly or indirectly by his/her operations to all parts of the work, both temporary and permanent, to all affected property including adjoining property.

4.4.3 At his/her own expense, the contractor shall protect all finished work and any stored materials whether on site or off and keep the same protected until the project is completed and accepted. In the case of substantial completion accompanied by beneficial occupancy by the University, the contractor's obligation to protect his/her finished work shall cease simultaneously with the occupancy of the portion or portions of the structure.

4.4.4 The contractor shall defend, protect, indemnify and save harmless the State and the University from all claims, suits, actions, damages and costs of every name and description arising out of, or resulting from, the performance of or failure to perform work under this contract. This responsibility is not limited by the provisions of other
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

indemnification provisions included elsewhere herein or compliance with any other insurance provision.

4.4.5 In order to protect the lives and health of his/her employees, the contractor shall comply with all applicable statutes, laws, rules, and regulations and shall maintain an accurate record of all cases of death, occupational disease and injury requiring medical attention or causing loss of time from work arising out of and in the course of employment on work under this contract. The contractor alone shall be responsible for the safety, efficiency and adequacy of his/her plant, appliances and methods and, for any damage or injury, which may result from his/her failure or his/her improper construction, maintenance or operation.

4.5 PERMITS - LAW - REGULATIONS

4.5.1 Unless otherwise provided in the contract documents, the contractor shall secure but the University shall pay for all permits and governmental fees and inspections necessary for the proper execution and completion of the work.

4.5.2 All construction work shall be done in accordance with the New Jersey Uniform Construction Code. No work requiring inspections and approvals of construction code officials is to be covered or enclosed prior to inspection and approval by appropriate code enforcement officials.

4.5.3 The work under this contract is exempt from local ordinances, codes and regulations as related to the building and the site on which it is located, except where construction could adversely affect adjacent property, public sidewalks and/or streets. The contractor shall coordinate his/her activities with municipal and/or highway authorities having appropriate jurisdiction.

4.5.4 Soil conservation measures are to be in accordance with the County Soil Conservation District requirements and all pertinent codes and regulations.

4.5.6 The contractor shall comply with all applicable Federal, State and local laws and regulations and all conditions of permits controlling pollution of the environment. Necessary precautions shall be taken to prevent pollution of streams, lakes, ponds, wetlands, ground water and reservoirs with fuels, oils, bitumens, chemicals or harmful materials and to prevent pollution of the atmosphere from particulate and gaseous matter. All sewage disposal work shall conform with the regulations of the State Department of Environmental Protection.

4.5.7 The University will pay for all code inspections; however, it is the contractor's responsibility to request and set up inspections with the appropriate agency for all work requiring inspection, in a timely manner.

4.5.8 Consistent with sub-paragraph 4.4.4, the contractor shall be responsible for and save harmless the University from all fines, penalties or loss incurred for, or by reason of, the violation of any Federal, State of municipal law, rule, regulation or ordinance while the said work is in the process of construction.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

4.5.9 Without limiting the foregoing, the contractor shall comply with the Federal Occupational Safety and Health Act of 1970 and all of the rules and regulations promulgated there under and the New Jersey Worker and Community Right-to-Know Act, PL1983 c. 315 N.J.S.A. 34:5A-1, et.seq.

4.5.10 As a result of a finding, by an appropriate finder of fact, that the contractor caused a substantial violation of a Federal, State or local statute or regulation on said project, the University may declare the contractor to be in default.

4.5.11 Prior to the start of any crane equipment operations, the contractor shall make all necessary applications and obtain all required permits from the Federal Aviation Administration (FAA). The sequence of operations, timing and methods of conducting the work shall be approved by the FAA to the extent it relates to their jurisdiction.

4.6 STORAGE, CLEANING AND FINAL CLEAN-UP

4.6.1 The contractor shall confine his/her apparatus, the storage of his/her equipment, tools and materials and his/her operations and workmen/workwomen to areas permitted by law, ordinances, permits, contract limit lines as established in the contract documents, the rules and regulations of the University or as ordered by the contracting officer and/or University’s project manager and shall not unreasonably encumber the site or the premises with his/her materials, tools and equipment.

4.6.2 At all times during the progress of the work, the contractor shall keep the premises and the job site free from the accumulation of all refuse, rubbish, scrap materials and debris caused by his/her operations to the end that the premises and site shall present a neat, orderly and workmanlike appearance at all times. This is to be accomplished as frequently as is necessary by the removal of such material, debris, etc. from the site and the owner's premises.

4.6.3 Upon completion of the construction, the contractor will remove all his/her tools, construction equipment, machinery, temporary staging, false work, formwork, shoring, bracing, protective enclosures, scaffolding, stairs, chutes, ramps, runways, hoisting equipment, elevators, derricks, cranes, etc. from the project site.

4.6.4 Should the contractor not promptly and properly discharge his/her obligation relating to cleaning and final clean-up, the University shall have the right to employ others and to charge the cost thereof to the contractor after first having given the contractor a three (3) working day written notice of such intent.

4.6.5 In each instance, the clean-up work shall be performed by the contractor.

4.6.6 All construction equipment, materials or supplies of any kind, character or description of value belonging to the contractor which remains on the job site for more than thirty (30) days from the date of the certificate of final acceptance and completion issued by the University to the contractor shall become the absolute property of the University. It shall be disposed of in any manner the University
4.7 CUT-OVERS, TIE-INS, INTERRUPTIONS TO EXISTING BUILDINGS

4.7.1 All cut-overs of inter and tie-ins to existing building shall be scheduled and coordinated in advance with the contracting officer’s representative and shall be done at a time convenient to the University so as not to unreasonably interfere with its operations.

4.8 WORKDAYS

4.8.1 Regular working hours shall be 8:00 a.m. to 4:30 p.m. Monday through Friday or as agreed to by the Contractor and University after consultation with the University’s project manager. Changes thereto may be granted with written approval of the contracting officer. Any work required to be performed after regular working hours or on Saturdays, Sundays or legal holidays as may be reasonably required consistent with contractual obligations shall be performed without additional expense to the University. The contractor shall obtain approval of the contracting officer through the University’s project manager for performance of work after regular working hours or on non-regular workdays at least forty-eight (48) hours prior to the commencement of overtime, unless such overtime work is caused by an emergency.

4.9 DRAWINGS, SPECIFICATIONS, SHOP DRAWINGS, AS-BUILT DRAWINGS

4.9.1 The contracting officer, through the Architect/Engineer or University’s project manager, will furnish additional instructions for the proper execution of the work after he/she becomes aware of its need. All drawings and instructions issued by the contracting officer shall be consistent with the contract documents and reasonably inferable there from. The work shall be executed in conformity therewith. The contractor shall do no work without proper drawings and instructions. In giving such additional instructions, the contracting officer will have the authority to make minor changes in the work not involving extra cost. Drawings and instructions with such supplementary details as may be furnished or approved are understood to be included and a part of the contract.

4.9.2 Where certain of the work is shown in complete detail but not repeated in similar detail in other areas of the drawings or there is an indication of continuation, the remainder being only shown in outline, the work shown in detail shall be understood to be required in other like portions of the project.

4.9.3 At any time after the execution of his/her contract, the contractor shall not make any claims whatsoever based upon insufficient data or his/her incorrectly assumed conditions nor shall he/she claim any misunderstandings with regard to the nature, conditions or character of the work to be done under the contract and he/she shall assume all risks resulting from any changes in conditions not caused by the University, the contracting officer or the University’s project manager which may
occur during the progress of the work. In the event that the Contractor alleges that there was insufficient data or that he/she incorrectly assumed any condition or that he/she claims any misunderstanding with regard to the nature, conditions or character of the work, the Contractor shall disclose to the University the method by which he/she intended to perform the work in question as set forth in his/her bid. This information must be provided with the initial notice from the Contractor to the University. The Contractor shall not be entitled to any additional compensation based upon clarifications issued pursuant to this section.

4.9.4 If the contractor desires to make any deviations or changes from the requirements of the contract documents, he/she shall obtain the consent of the contracting officer through the University’s project manager or Architect/Engineer to such changes in writing before submitting drawings showing such proposed changes. All drawings submitted by the contractor shall have been checked and approved by him/her before submission. The drawings and specification references shall be noted on all submissions. Failure to comply with these instructions will be sufficient reason to return such drawings to the contractor without any action being taken.

4.9.5 LEFT BLANK

4.9.6 LEFT BLANK

4.9.7 LEFT BLANK

4.9.8 LEFT BLANK

4.9.9 Wherever any material is specified in accordance with federal specifications, ASTM specifications, American National Standards Institute, Inc. specifications, manufacturer’s association’s specification standards or other standards, the contractor shall present an affidavit to the Architect/Engineer upon request from the manufacturer certifying that the material complies with the particular standard specification. Where necessary and requested or specified, supporting test data shall be submitted to substantiate compliance. All tests required in support of the affidavit shall be at the cost of the contractor.

4.10 SAMPLES

4.10.1 The contractor shall furnish all samples as directed to the University’s project manager who shall forward them to the Architect/Engineer and University for approval. The work shall be in accordance with approved samples. Such samples shall be representative of the actual and the University’s project manager shall submit conditions promptly to the contracting officer after approval by the Architect/Engineer at the beginning of the work as so as give the contracting officer time to examine them. Contractor shall provide all disclaimers, limitations and conditions to contracting officer in order to fully inform contracting officer of potential deviations from the sample, including but not limited to color, texture, type, finish, etc. Any list of samples prepared by the Architect/Engineer is for the contracting officer’s convenience only and shall not be construed as limiting the number of samples,
4.11 LEFT BLANK

4.12 OPENINGS, CHANNELS, CUTTING AND PATCHING

4.12.1 The contractor shall be responsible for furnishing and setting of sleeves, built-in items, anchors, inserts, etc. for his/her work and for all cutting, fitting, closing-in, patching, finishing or adjusting of his/her work in a new and/or existing construction as required for the completed installation. Where applicable, the contractor shall build these items into the construction.

4.12.2 The contractor shall build recesses, channels, chases, opening and flues and shall leave or create holes where on drawings or where directed for steam, water or other piping, electrical conduits, switch boxes, panel boards, hues and ducts or any other feature of the heating and ventilating work.

4.12.3 The contractor shall close, build-in and finish around or over all openings, chases, channels, pockets, etc. after installation has been completed.

4.13 TESTS

4.13.1 The contractor shall notify the contracting office in writing through the University's project manager of all work required to be inspected, tested or approved. The notice shall be provided no later than five (5) working days prior to the scheduled inspection, test or request for approval. The contractor shall bear all costs of such inspections, tests or approvals except for code inspections as stated in 4.5.6. All tests must be recorded by the contractor and records made available to the University and/or University's project manager upon request.

4.13.2 LEFT BLANK

4.13.3 LEFT BLANK

4.13.4 LEFT BLANK

4.13.5 The contractor shall acquire inspection or testing services using only those firms/entities preapproved by the University. Failure to use a firm/entity preapproved by the University shall be grounds for rejection of the inspection or test as non-conformance.

4.13.6 In addition to the above, the contractor agrees to insert in all contracts/purchase orders for inspection and testing the requirement for the inspection or testing firm/entity to submit, in conjunction with the report to the contractor, a copy of the report directly to the University's project manager or contracting officer. The copy shall be held pending receipt of the contractor's certification of the report. Further, the contractor agrees to require all reports be submitted within fourteen (14)
calendar days of the test or inspection. Failure to provide reports within the required time shall be addressed pursuant to Article 10.3.9 of the general conditions.

4.13.7 LEFT BLANK

4.14 EQUIPMENT - MATERIAL

4.14.1 The contractor warrants to the University, the contracting officer, University's project manager and Architect/Engineer that all materials and equipment furnished under the contract will be new, unless otherwise specified, and that all work will be of good quality, free from defects, faults and in conformance with the contract documents. All work not conforming to these requirements, including substitutions not properly approved and authorized, may be considered defective and rejected by the contracting officer, the University's project manager or the Architect/Engineer. If required by the University's project manager, Architect/Engineer or the contracting officer, the contractor shall furnish satisfactory evidence as to the kind and quality of materials and equipment. This warranty is not limited by the provisions of the other paragraphs contained herein.

4.14.2 The contractor shall furnish and deliver the necessary equipment and materials in ample quantities and as frequently as required to avoid delay in progress of the work and shall store same so as not to cause interference with the orderly progress of the project.

a. The University may choose to pre-purchase some or all of the mechanical equipment due to lead time constraints. Upon issuance of the Notice to Proceed, the contract for this equipment will be assigned to the General Contractor.

b. The General Contractor shall receive all pre-purchased items, provide for installation as well as all work associated with the proposed equipment in their bid.

c. The General Contractor will provide Operation and Maintenance Data, training and warranties as part of the project closeout process.

4.14.3 The contractor shall furnish and pay for all necessary transportation, storage, scaffolding, centering, forms, water, labor, tools, light and power mechanical appliances and all other means, materials and supplies for properly prosecuting the work under this contract unless expressly specified otherwise. The contractor shall make arrangements to have representatives of his/her firm at the site to accept delivered materials. The University will not be held responsible for damage, theft or disappearance of the contractor's property. In receiving and storing equipment and material, the contractor shall be responsible for OSHA requirements for the entire project including OSHA requirements for temporary access to all floors.

4.14.4 Whenever available, manufactured products of the United States shall be used in
this work. Wherever practicable, preference shall be given at all times to material and equipment manufactured or produced in the State of New Jersey where such preference is reasonable and will best serve the interest of the University.

4.14.5 No materials, equipment or supplies for the work shall be purchased by the contractor or any sub-contractor subject to any lien or encumbrance or other agreement by which an interest is retained by the seller. By signing his/her requisition for payment, the contractor warrants that he/she has good and sufficient title to all such material, equipment and supplies used by him/her in the work, free from all liens, claims and encumbrances.

4.15 SUBSTITUTIONS

4.15.1 The contract documents are intended to produce a building of consistent character and quality of design. All components of the building, including visible items of mechanical and electrical equipment, have been selected to have a coordinated design in relation to the overall appearance of the building. The Architect/Engineer shall judge the design and appearance of proposed substitutes on the basis of their suitability in relation to the overall design of the project as well as for their intrinsic merits. The Architect/Engineer will not approve as equal to materials specified proposed substitutes which, in the Architect's/Engineer's sole opinion, would be out of character, obtrusive or otherwise inconsistent with the character or quality of design of the project. In order to permit coordinated design of color and finishes, the contractor shall, if required by the Architect/Engineer, furnish the substituted material in any color, finish, texture or pattern which would have been available from the manufacturer originally specified at no additional cost to the owner.

4.15.2 In the event the contractor should propose a substitution for the specified equipment or materials, it shall be his/her responsibility to submit proof of equality and to provide and pay for any tests which may be required by the contracting officer, the University's project manager or Architect/Engineer in order to evaluate such proposed substitution.

4.15.3 Where any particular brand or manufactured article is specified, it shall be regarded as a standard. Similar products of other manufacturers, capable of equal performance and quality in the opinion of the contracting officer, will be accepted, if approved.

4.15.4 There shall be no extension of time to the project schedule granted to accommodate the requirements of this Article 4.15. Substitutions and/or any testing, etc. required to be done by the contractor to have the substitution approved will be done within the approved project schedule timeframe.

4.15.5 The application for approval of a substitution by the contractor shall include the following information:

a) identifying information shall be fully and completely furnished
b) note whether the item is included in the specifications in which case,
identify the specification paragraph and section
c) attach data indicating, in detail, whether and how the substitution differs, if at all, from the article specified
d) if a credit is to be offered for the substitution, a detailed itemization of the amount of credit must be shown
e) if the proposed substitution involves a change in the scope of the work of this or any other contractor or trade under the contract documents, then and, in that event, the contractor undertakes and agrees to be responsible for any and all added costs and thereby involved by reason of the change in the work, including redesign if any
f) when requesting approval of an out-of-state sub-contractor or material manufacturer or supplier, a statement indicating that reasonable effort was first made to find and employ New Jersey firms and/or materials at comparable costs, term and performance capabilities
g) an agreement by the contractor to submit proof of equality and to have such tests performed at his/her own expense as may be required by the contracting officer or the Architect/Engineer
h) the contractor shall not base his/her bid on substitutions, which may have been approved on previous projects; bids shall be based solely on plans and specifications of the subject project

Since substitutions are primarily for the financial benefit of the contractor, a credit change order shall accompany each request for substitution.

4.16 SUB-CONTRACTOR APPROVALS

4.16.1 Approval by the contracting officer, University's project manager or Architect/Engineer of a sub-contractor or material supplier shall not relieve the contractor of the responsibility for complying with all provisions of the contract documents. The approval of a sub-contractor does not imply approval of any material, equipment or supplies.

4.16.2 The contractor shall coordinate and supervise the work performed by sub-contractors to the end that the work is carried out without conflict between trades and so that no delay to the general progress of the work occurs. The contractor and all sub-contractors shall afford each trade, any separate contractor or the owner every reasonable opportunity for the installation of work and the storage of materials at all times.

4.17 PAY LIMITS FOR ADDITIONS OR DEDUCTIONS FOR EXCAVATION

4.17.1 The method of measurement and establishment of pay limits for additions or deductions for excavation shall be as follows:

a) Basement Excavations: Pay limit for excavation shall be determined by horizontal and sloped lines as defined on the foundation plan and "typical subsoils preparation details": In the case where the contract limit line is in close
proximity to the building and sheeting/shoring are required, the vertical line of sheeting will be the pay limit line

b) All Pipelines and Encased Utilities: pay limit for trench excavations shall be limited to width of thirty-six inches (36") or the largest diameter of pipe barrel plus twenty-four inches (24"), whichever is greatest, and depth at bottom of pipe barrel; when rock is encountered, the contractor shall excavate to six inches (6") below bottom of pipe barrel; a compacted granular fill for the pipe shall be provided by the contractor; no additional payment will be made for this additional six inches (6") of granular fill

c) Encased Electrical Conduit, Steam Transmission Lines and Unformed Foundation Footing: width and depth of trench shall be limited to same width and elevations of the structure shown on the contract drawings

d) Unsuitable Foundation Material: where unsuitable foundation material is encountered, the contractor shall excavate to elevations as directed by the contracting officer through the University's project manager; unit prices for additional excavation and replacement with approved compacted granular fill, stated in the proposal form, shall be used as a basis for additional payment by the University; in the event that no unit price is included in the proposal form, the unit prices shall be negotiated with the contracting officer through the University's project manager prior to performance of the work or, at the option of the contracting officer, shall be done on a time and material basis plus ten percent (10%) profit; the decision setting unit prices shall be made by the contracting officer

4.18 SOIL BORINGS (IF APPLICABLE)

4.18.1 The University may possess geotechnical reports. Any geotechnical report/reports is/are included in the project manual for informational purposes only. The University is in no way responsible for, nor does it warrant, the data contained in the report(s) or the methods utilized in their preparation. Bidders will be granted access to the site to conduct their own tests upon request. The contractor assumes full responsibility for interpretation of any borings and the University shall have no responsibility or liability should the data provided prove to be incorrect or unrepresentative. All the provisions of paragraph 4.1.1 shall also apply hereto.

4.19 COORDINATION OF WORK

4.19.1 The contractor shall be responsible for coordinating all work performed upon the project as follows:

a) the contractor shall be responsible for all arrangements for the storage of materials

b) the contractor shall keep informed of the progress and the details of work of his/her sub-contractors and shall notify the University's project manager immediately of lack of progress or defective workmanship on the part of sub-contractors; the contractor shall provide scheduling updates at the bi-weekly project meetings

c) failure of the contractor to keep informed of the work progressing at the site
and failure to give notice of lack of progress or defective workmanship by others shall be construed as acceptance by him/her of the status of the work as being satisfactory for proper coordination and completion of the project

d) the contractor shall be responsible to supervise, direct and manage the conduct of the construction and the efforts of all sub-contractors so as to deliver the project as required under the contract

4.19.2 The contractor shall refer to all of the drawings including those showing primarily the work of the mechanical, electrical or other specialized trades and to all of the sections of the specifications and shall perform all work reasonably inferable therefrom as being necessary to produce the indicated results. The contractor shall insure that all of his/her sub-contractors are fully familiar with their obligations to the contractor in his/her performance of the contract.

4.19.3 This project as described by these specifications and accompanying drawings is bid under a single prime contract as mandated by 1B1.2 of the instructions to bidders. However, this section will apply to work relating to this project and not described herein as part of this project.

4.20 PROTECTION OF CONTRACTOR'S PROPERTY

4.20.1 The contractor shall adequately secure and protect his/her own tools, equipment, materials and supplies. The University assumes no liability for any damage, theft or negligent injury to the contractor's property or to the property of his/her employees, agents or sub-contractors.

4.21 PATENTS

4.21.1 The contractor shall hold and save the University and its officers, agents, servants and employees harmless from liability of any nature or kind, including costs and expenses for or on account of any patented or unpatented invention, process, article or appliance manufactured or used in the performance of the contract, including its use by the University, unless otherwise specifically stipulated in the contract documents.

4.21.2 License and/or royalty fees for the use of a process, which is authorized by the University, must be reasonable and paid to the holder of the patent or his/her authorized licensee directly by the University and not by or through the contractor. If the contractor uses any design, device or materials covered by letters, patent or copyright, he/she shall provide for such use by suitable agreement with the University of such patented or copyrighted design, device or material. It is mutually agreed and understood that, without exception, the contract prices shall include all royalties or costs arising from the use of such design, device or materials in any way involved in the work. The contractor and/or his/her sureties shall indemnify and save harmless the University from any and all claims for infringement by reason of the use of such patented or copyrighted design, device or materials or any trademark or copyright in connection with work agreed to be performed under this contract and shall indemnify the University for any cost, expense or damage which it
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

may be obliged to pay by reason of such infringement at any time during the prosecution of the work or after completion of the work.

4.22 RIGHT TO AUDIT

4.22.1 The University reserves the right to audit the records of the contractor in connection with all matters related to this contract. The contractor agrees to maintain his/her records in accordance with generally accepted accounting principles for a period of not less than three (3) years after receipt of final payment.

Accounting records must identify all labor and material, costs and expenses whether they be direct or indirect. The identification must include at least the project number for direct expenses and/or account number for indirect expenses. All charges must be supported by appropriate documentation including, but not limited to, canceled checks.

4.22.2 The contractor shall develop, maintain and make available to the contracting officer upon request such schedule of quantities and costs, progress schedules, payrolls, reports, estimates, change orders, all original estimates, take-offs and other bidding documents, all sub-contractors and supplier contracts and changes, all records showing all costs and liabilities incurred or to be incurred in connection with the project including all sub-contractor and supplier costs, all payment records and all records incurred in labor and personnel of any kind, records and other data as the University may request concerning work to be performed under this contract.

4.22.3 The contractor acknowledges and agrees that no claim for payment, which is premised, to any degree upon actual costs of the contractor shall be recognized by the University except and to the extent that such actual costs are substantiated by records required to be maintained under these provisions.

4.22.4 The contractor acknowledges and agrees that the contractor's obligation to establish, maintain and make available records and the University's right to audit as delineated herein shall extend to actual costs incurred by sub-contractors in performing work required under the contract or any supplemental agreement thereto.

4.23 CONTROL WIRING

4.23.1 The contractor shall include in his/her proposal the cost of all control wiring and its installation for all mechanical equipment including, but not limited to, heating, ventilating and air conditioning systems, ATC systems, boilers, remote monitoring systems, etc. which systems require electrical control wiring. The contractor shall employ a sub-contractor approved by the University for all such control wiring. The sub-contractor shall provide a final certificate of electrical inspection of the control wiring.

Installed or control wiring must connect to a point of electrical power supply as shown on the contract documents.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

4.24 STAND-BY PERSONNEL

4.24.1 The contractor, when obligated to employ stand-by personnel by trade agreement to which he/she is a party, shall determine and include all such costs thereof in his/her bid proposal. The contractor shall not, at any time, make a claim to the University for costs relating to stand-by maintenance or stand-by supervision for electric motor driven or other equipment. The University, under no condition, will entertain or consider a claim in this regard unless such claim is made as a result of the University's unreasonable refusal to accept beneficial occupancy of the completed project.

ARTICLE 5 - CONTRACTOR FOR GENERAL CONSTRUCTION; SPECIAL RESPONSIBILITIES

Whenever the term "general construction contractor" is used herein, it is intended to mean either the contractor for general construction whenever separate prime contracts are involved or the sole contractor if there are no other prime contracts engaged on the project.

5.1 UNIQUE ROLE OF RESPONSIBILITY-STAFFING

5.1.1 Wherever separate contracts are awarded to separate prime contractors for different branches of the work or where there is a single prime contractor, the contractor for general construction, hereinafter referred to as the general construction contractor, has the responsibility for being the supervisor, manager, overseer, coordinator and expeditor of all the contractors and/or sub-contractors and/or of the total construction process and of its parts in accordance with the contract documents.

5.2 CONTRACTING OFFICER'S RELIANCE UPON CONTRACTOR FOR GENERAL CONSTRUCTION

5.2.1 The contracting officer relies upon the organization, management, skills, cooperation and efficiency of the general construction contractor to supervise, direct, control and manage the work so as to deliver the completed project in conformance with the contract documents and within the scheduled time.

5.2.2 The contractor for general construction shall include in his/her bid an amount sufficient to cover his/her cost of furnishing necessary administrative and supervisory forces to coordinate his/her own work and that of his/her sub-contractors and other primary contractors.

5.3 LAYOUT, DIMENSIONAL CONTROL AND VERIFICATION, SURVEYOR'S CERTIFICATION

5.3.1 The general construction contractor shall be responsible for locating and laying out the building of all of its parts of the site in strict accordance with the drawings and shall accurately establish and maintain dimensional control. He/she shall employ and pay for the services of a competent and licensed New Jersey engineer or land surveyor hereinafter Contractor's Engineer or Surveyor who shall be approved by the University to perform all layout work and to test the levels of excavations,
5.3.2 The Contractor's engineer or surveyor, in his/her layout work both on the site and within the building shall establish all points, lines, elevations, grades and bench marks for proper control and execution of the work. He/she shall establish a single permanent benchmark as directed to which all three (3) coordinates of dimensional control shall be referred. He/she shall verify all University furnished topographical and utility survey data and all points, lines, elevations, grades and benchmarks. Should any discrepancies be found between information given on the drawings and the actual site or field conditions, the general contractor shall notify the University's project manager of such discrepancy and shall not proceed with any work affected until receipt of written instructions from the University's project manager.

5.3.3 Maintenance of Construction Access Routes: The general construction contractor shall be responsible for providing and maintaining unobstructed traffic lanes on the designed construction access routes either shown on the contract drawings or reasonably required so as to perform the work and shall provide and maintain all reasonably required safety devices. He/she shall provide the addition of materials, their grading and compaction, the removal of snow and debris so as to provide and maintain the general, serviceable condition of the access roadbed as well as pedestrian walk ways.

5.3.4 Project Sign: The general construction contractor shall erect and maintain one (1) sign at the project site as shown on the drawings and located as directed by the University's project manager. Painting shall be done by a professional sign painter with two (2) coats of exterior paint, colors, letter face and layout as shown. No other signs will be permitted at the site. Upon completion of the project and when directed by the University's project manager or the University, the general construction contractor shall remove the sign. Should there be a change in the listed officials, the contractor shall make appropriate changes to the sign at his/her expense. Sign is to be six feet by ten feet (6’ x 10’) to include, at a minimum, the information shown on the drawing title sheet. Additional information will be as directed by the owner.

5.3.5 The general construction contractor, at his/her expenses, shall provide and maintain necessary temporary dustproof partitions or other necessary protection around areas of work in any existing building or in new building areas as directed by the University's project manager or the contracting officer.

5.3.6 The contractor shall supply dumpster for trash, trash chutes, all debris, clean-up and all temporary fire protection per OSHA requirements.

5.3.7 Repair of Cracks: The general contractor accepts sole responsibility for repair of uncontrolled dislodgement, cracking, delaminating and peeling of finished surfaces, such as, concrete, precast concrete, case and natural stone; until masonry, millwork, plaster, glass and applied finishes; such as, paint and special coatings;
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

within the contract scope and the limits of specified guarantee periods regardless of the cause.

5.3.8 The general construction contractor shall be responsible for replacement of all broken glass installed by him/her or his/her sub-contractors after same has been installed no matter by whom or what caused same and shall replace all broken, scratched or otherwise damaged glass before the completion and acceptance of the work or as required pursuant to any applicable warranty. He/she shall wash all glass on both sides when directed by University's project manager and at completion of the Project, removing all paint spots, stains, plaster, etc.

5.3.9 Nothing herein is intended to limit the right of the contractor to seek payment from the party who is responsible for the damages.

5.4 PHOTOGRAPHS

5.4.1 With each monthly application for payment the general contractor shall submit progress photographs of the building in duplicate to the University's project manager, giving four (4) views of each area photographed as selected by the University's project manager, taken from the same points each month.

5.4.2 The photographs shall be eight inches by ten inches (8" x 10"). Two (2) copies and color photos shall bear a caption stating the date of the exposure and the name of the project, the contractor, the Architect/Engineer and the University's project manager.

5.5 GUARANTEE

5.5.1 Neither the final certification of payment nor any provision in the contract documents nor partial or entire occupancy of the premises by the University shall constitute an acceptance of work not done in accordance with the contract documents nor shall it relieve the contractor of liability with respect to any expressed or implied warranties or responsibility for faulty materials or workmanship. The University will give notice of observed defects with reasonable promptness. The surety's obligation shall continue beyond final acceptance to the extent that the contractor would have had such obligation.

5.5.2 In addition to guarantees otherwise specified in other sections of the specifications, the contractor and each individual sub-contractor shall guarantee and warrant, in writing, the work to be performed and all materials to be furnished under this contract against the defects in materials or workmanship and to pay for the value of repair of any damage to other work resulting there from for a period of one (1) year from the date of Final Acceptance. All guarantees, bonds, etc. required by the specifications shall be in writing in requisite legal form and delivered to the contracting officer at the time of submission of the requisition for final payment. All sub-contractor's guarantees, bonds, etc. shall be underwritten by the contractor who shall obtain and deliver same to the contracting officer before the work shall be deemed finished and accepted.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

5.5.3 The contractor shall, at his/her own expense and without cost to the University within a reasonable time after receipt of written notice thereof, make good any defects in material or workmanship which may develop during stipulated guarantee periods as well as any damage to other work caused by such defects or by their repairs. Any other defects in material or workmanship not reasonably observable or discovered during the guarantee period shall be repaired and/or replaced at the contractor's expense and such shall be completed within a reasonable time after written notice is given to the contractor.

5.5.4 It is anticipated that certain permanent equipment will have to be activated during construction of the project to support construction operations. This would particularly be the case with respect to service elevators and those portions of the permanent heating system, which might be required to provide temporary heat for interior, finish operations. Regardless of when equipment is activated for use during construction, all equipment warranties must extend for the time periods required in these specifications starting as of the date of Final Acceptance, of the project by the University. The contractor shall include in his/her base bid all costs necessary to provide extended warranties as necessary for any equipment, which may be activated prior to final building acceptance by the University.

5.6 INSPECTION OF ROADWAY SUB-GRADES

5.6.1 Where applicable, the general construction contractor shall notify the University's project manager forty-eight (48) hours prior to anticipated completion of all roadway sub-grade work. The University's project manager may request an inspection by an appropriate agency to insure that the sub-grade meets the compaction standards. All sub-grades shall be proof-rolled for such inspection. If compaction soil tests are required, these tests will be done by soils testing laboratories through the contractor unless contrary provisions are made elsewhere in the specifications. The contractor shall not proceed with base course until the results of the compaction tests are determined and upgrade approved by the University's project manager.

5.7 WATCHMAN SERVICES

5.7.1 The general construction contractor shall provide watchman services to adequately protect the work, stored materials and temporary structures located on the premises and to prevent unauthorized persons from entering upon the construction site. The University or the University's project manager may require the general construction contractor to increase the watchman services in terms of hours or number of watchman, at no cost to the University, in the event that the University and/or University's project manager determine that the watchman services are not sufficient.

ARTICLE 6 - TEMPORARY FACILITIES, UTILITIES AND SERVICES

Whenever the term "general construction contractor" is used herein, it is intended to mean either the contractor for general construction whenever separate prime contracts are involved or the sole
contractor if there are no other prime contracts engaged on the project.

6.1 FIELD OFFICES

6.1.1 The contractor will provide on-site and maintain during the project construction a
suitable weather-tight insulated field office conveniently located for reception and
continuous use and shall maintain therein a complete set of contract documents
including plans, specifications, CPM schedules, change orders, logs and other
details and correspondence. The field office shall contain approved and safe
heating facilities and lighting, convenience outlets, fire extinguisher, a minimum of
two (2) operating windows CIF 15 S.F. each, outside door, handle, hasp and
padlock.

6.1.2 Deleted

6.1.3 Deleted

6.1.4 The contractor shall provide his/her own telephones. The general construction
contractor shall provide a coin operated pay telephone for use by all workers on the
construction site.

6.2 STORAGE SHEDS, TOOL SHEDS, SHOPS AND EMPLOYEE SHEDS

6.2.1 LEFT BLANK

6.3 STORAGE AREAS, EMPLOYEE VEHICULAR PARKING, EQUIPMENT MARSHALLING
AREAS, EXCAVATION BORROW/SPOILS DESIGNATED AREAS, COMMERCIAL
CANTEEN AREA, ETC.

6.3.1 The contractor shall be responsible for providing his/her own requirements. He/she
shall locate these areas to suit project requirements as indicated in the contract
documents with the University’s project manager’s concurrence.

6.4 TEMPORARY TOILET FACILITIES

6.4.1 The contractor shall provide and pay for suitable temporary toilets at an approved
location approved by the University’s project manager on the site prior to the start
of any fieldwork. They shall comply with all Federal, State and local laws. The
contractor will be responsible for maintenance, removal and relocation as described
hereinafter.

6.4.2 LEFT BLANK

6.4.3 LEFT BLANK

6.4.4 LEFT BLANK

6.4.5 LEFT BLANK
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

6.4.10 Workman are not to use the finish bathroom and toilet facilities in the project buildings. Reasonable steps must be taken by the general construction contractor to enforce this rule.

6.5 TEMPORARY DRIVES AND WALKS

6.5.1 The general construction contractor shall be responsible for keeping all roadways, drives and parking areas within or proximate to the site free and clear of debris, gravel, mud or any other site materials by insuring that all measures reasonably necessary are taken to prevent such materials from being deposited on such surfaces including, as may be appropriate, the cleaning of vehicle wheels, etc. prior to their leaving the construction site. Should such surface require cleaning, the general construction contractor will clean these surfaces without additional cost to the University. The general construction contractor will be held accountable for any citations, fines or penalties imposed on the University for failing to comply with local rules and regulations.

6.5.2 LEFT BLANK

6.5.3 The general construction contractor shall obtain permission, in writing, from the University's project manager before using any existing driveways or parking areas not specifically designated for such use in the contract documents for construction purposes. He/she shall maintain such driveways and areas in good condition during the construction period and, at completion of the project, shall repair or replace said driveway or areas in a manner acceptable to the University. Conditions before use should be carefully photographed or documented by the contractor and a copy provided to the University prior to the commencement of work.

6.6 TEMPORARY WATER

6.6.1 LEFT BLANK

6.6.2 It is the obligation of the contractor requiring temporary facilities to investigate and make specific arrangements with the University through the University's project manager for such facilities and to include in his/her proposal the cost of any facilities he/she may require for proper conduct of his/her work.

6.6.3 The contractor shall install his/her temporary and/or permanent water lines to the boiler room and heating equipment in sufficient time to be available for supplying water for testing and operation on the heating system when needed to supply heat
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

6.6.4 The contractor is responsible to protect all water lines from damage or freezing be they permanent or temporary. Should water connections be made to an existing line, the contractor shall provide a positive shut-off valve at his/her cost and expense.

6.6.5 If the contractor fails to carry out his/her responsibility in supplying the water as set forth herein, he/she shall be held responsible for such failure and the University's project manager shall have the right to take such action as he/she deems proper for the protection and conduct of the work and may deduct the cost involved in so doing from any sums due to the contractor.

6.7 TEMPORARY LIGHT AND POWER

6.7.4 If applicable and necessary, the contractor shall provide all electrical service for operation of elevator equipment during construction as well as for permanent installation.

6.7.5 The contractor shall pay for the cost of all electric energy used on distribution lines installed until the project is accepted by the University.

6.7.6 The contractor shall provide and pay for all maintenance, servicing, operating and supervision of the service and distribution facilities. He/she shall also connect, maintain and service any electrical equipment which may be necessary for maintaining heat whenever heat is required in the building whether from the temporary or permanent system.

6.7.7 The contractor failing to carry out his/her responsibility in supplying uninterrupted light and power or other utility as set forth in the construction documents shall be held responsible for such failure and the University’s project manager shall have the right to take such action as he/she deems proper for the protection and conduct of the work and shall deduct the costs involved from the amount due the contractor at fault.

6.7.8 There shall be no additional cost to the University because of stand-by requirements due to conflict in the normal working hours of trades. Where overtime work by the contractor necessitates stand-by electricians or other trades, the contractor shall be responsible for making appropriate arrangements, financial and otherwise, for such service at no cost to the University.

6.7.9 LEFT BLANK
6.9 TEMPORARY HEAT

6.9.1 Maintenance and safe operation of the temporary heating system and equipment shall be the responsibility of the Contractor. Any liability arising out of damage or injury resulting from the use or operation of heating equipment by the Contractor, sub-contractors, equipment and material suppliers, consultants, agents of any of them and anyone employed either directly or indirectly by any of them or anyone for whose acts they may be liable shall be the sole responsibility of the Contractor.

6.9.2 LEFT BLANK

6.9.3 LEFT BLANK

6.9.4 LEFT BLANK

6.9.5 LEFT BLANK

6.9.6 LEFT BLANK

6.9.7 LEFT BLANK

6.9.8 LEFT BLANK

6.9.9 On the (60th) calendar day after the building, buildings or major unit thereof is/are permanently enclosed & the contracting officer has determined that heat is required for the proper execution of the construction work, the contractor shall continue to provide heat. A building or major unit thereof shall be considered "permanently enclosed" when (a) the exterior & enclosure work including walls, windows, glazing, louvers and doors have been permanently installed; (b) a permanent building roof has been completed & satisfactorily tested; (c) the permanent building roof drain system has been completed and made operational; (d) all building openings have been closed such that the building is weather tight. Regardless of whether the boiler room is within the confines of the major unit or not, it must be enclosed & the floor installed at least sixty (60) calendar days prior to the time when the contractor becomes responsible to supply heat.

6.9.10 Deleted

6.9.11 Deleted

6.9.12 The University reserves the right to permit the substitution of limited, temporary enclosures in lieu of permanent construction for the attainment of a permanently tight building if such action is deemed to be in the best interest of the project by the University’s project manager. This action will not be such as to create a future
jeopardy to the environmental integrity of the building as construction proceeds.

6.9.13 When the permanent heating system is the source of the heat, the contractor shall be responsible for paying all water, electricity and fuel required for the operation of the permanent heating system until beneficial occupancy acceptance of the project by the University except for the cost of fuel during the test period as previously provided. The contractor shall install adequate controls and shall arrange, at his/her own cost, for making such temporary connection as required for the operation of the heating system. Should the heating system be designed for the tie-in to existing steam lines for source of heat, the University will provide steam for temporary heat through the project permanent heating system at no cost to the contractor after tie-in is completed.

6.9.14 LEFT BLANK

6.9.15 Valves, traps and other parts of the heating system, except air filters, which are permanently installed by the contractor and used for supplying heat during the construction period, need not be replaced, provided that the system was in acceptable condition prior to its use and was properly maintained. The system shall be properly cleaned and adjusted to operate after the permanent system is in use. Seven (7) days prior to acceptance by the University of the heating system as substantially complete, the contractor shall replace disposable filters with clean filters of the type specified or turn over spare sets of filters to the University as directed by the Construction Manager.

6.9.16 If plastering, parging or finishing of any surface is necessary to enable the contractor to install the heating system in a manner as to permit its use for supplying heat during the construction period, the plastering, parging and finishing of such surfaces shall be done by the contractor so as not to delay the installation of the permanent system. In the event this plastering, parging or other finishing work is not completed in ample time to make possible the installation of permanent piping and heating units, the contractor shall install temporary/primary heating units. The cost of such temporary installation and its removal shall be paid by the contractor.

6.9.17 LEFT BLANK

6.9.18 If additional heat is required beyond that specified in the contract documents, the contractor should arrange and pay the additional costs thereof at no expense to the University.

6.9.19 The Contractor shall provide a cost to supply heat in accordance with all requirements of this Section and Division 1; General Requirements, Section 01500 of the Specifications.

6.10 TEMPORARY ENCLOSURES

6.10.1 Whenever necessary in order to maintain proper temperatures for the prosecution of the work or for the protection thereof, the contractor shall furnish and maintain
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

temporary enclosures for all openings in exterior walls which are not enclosed with finishing materials. Temporary wood doors shall be provided at door openings.

6.11 TEMPORARY CONSTRUCTION FENCE AND SIGNAGE

6.11.1 As required by the University’s project manager, the contractor shall provide and maintain an eight foot (8’) high temporary chain link fence with necessary posts and top rails to enclose the area at the job site and to guard and close effectively the designated area. The contractor shall be responsible for posting appropriate signage restricting access and shall further be responsible for controlling access to the job site. The contractor shall provide gates at locations where required for access to the enclosed area. Gates shall be of chain link material, cross-braced, hung on heavy strap hinges and shall have suitable hasps and padlocks.

6.11.2 The contractor shall remove the fence upon completion of the work or at such time before final completion as directed by the University.

6.12 EDGE PROTECTION

6.12.1 The contractor shall be responsible for proper protection for all floor, roof and stair penetrations.

ARTICLE 7 - SUB-CONTRACTORS

7.1 CONTRACTOR/SUB-CONTRACTOR RELATIONSHIP

7.1.1 As provided in other sections of the Contract Documents after award of the contract, the contractor shall notify the contracting officer through the University’s project manager in writing of the names of sub-contractors, other than those required to be listed in the bid, proposed to perform the principal parts of the work and of such others as the contracting officer may direct and shall not employ any sub-contractor without prior, written approval of the contracting officer or any that the contracting officer may, within a reasonable time, reject. Failure of the contracting officer to reply within fifteen (15) days upon receipt of such names shall constitute notice of approval.

7.1.2 If the contracting officer has a reasonable objection to any such proposed person or firm, the contractor shall substitute another sub-contractor to which the contracting officer has no reasonable objection. Under no circumstances shall the University be obligated for additional cost due to such substitution.

7.1.3 The contractor shall make no substitution for any sub-contractor, person or firm previously selected and approved without written notification to the contracting officer and receipt of his/her written approval for such substitution.

7.1.4 The contractor acknowledges his/her full responsibility to the University for all acts and omissions of his/her sub-contractors and of persons and firms either directly or indirectly employed by them equally to the extent that he/she is responsible for the
acts and omissions of persons and firms directly or indirectly employed by him/her and the contractor acknowledges he/she remains fully responsible for the proper performance of his/her contract irrespective of whether work is performed by his/her own forces or sub-contractors engaged by him/her.

7.1.5 Nothing contained in the contract documents shall create any contractual relationship between any sub-contractor and the University.

7.1.6 By an appropriate written agreement the contractor shall require each sub-contractor, to the extent of the work performed by the sub-contractor, be bound to the contractor by the terms of the contract documents and to assume toward the contractor all the obligations and responsibilities which the contractor, by these documents, assumes toward the University, the contracting officer, the University’s project manager and the Architect/Engineer. The contractor shall require each sub-contractor to enter into similar agreement with his/her sub-sub-contractors.

7.1.7 The contractor and all sub-contractors agree that, in the employment of both skilled and unskilled labor, preference shall be given to residents of the State of New Jersey if such labor force is available.

7.1.8 Approval by the contracting officer, the University’s project manager or Architect/Engineer of a sub-contractor or material supplier shall not relieve the contractor, the sub-contractor or material supplier of the responsibility of complying with all provisions of the contract documents. The approval of a sub-contractor does not imply approval of any material, equipment or supplies.

7.1.9 The contractor shall coordinate and supervise the work performed by sub-contractors to the end that the work is carried out without conflict between trades and so that no delay to the general progress of the work occurs. The contractor and all sub-contractors shall afford each trade, any separate contractor or the owner every reasonable opportunity for the installation of work and the storage of materials at all times.

7.1.10 The contractor shall require each sub-contractor to the extent of the work to be performed by the sub-contractor to be bound to the contractor to the terms of the University contract documents and to assume toward the contractor all the obligations and responsibilities which the contractor assumes by the documents to the University and its contractual parties.

7.1.11 The contractor shall not grant to any sub-contractor terms more favorable than those extended to the contractor by the University.

7.1.12 The contractor shall not permit his/her sub-contractor to perform sub-contract work without the express written approval of the contracting officer through the University’s project manager.

7.1.13 The contractor shall be required in all sub-contracts that the sub-contractor establish, maintain and make available to the University all records as defined and delineated
herein related to all work performed under the subcontractors including work performed by a sub-contractor.

ARTICLE 8 - RELATIONSHIP BETWEEN UNIVERSITY/CONTRACTOR

8.1 UNIVERSITY'S RIGHT TO PERFORM WORK

8.1.1 The University may and reserves the right to enter upon the premises at any and all times during the progress of the work or cause others to do so for the purpose of installing any apparatus or carrying on any construction not included in these specifications or for any other reasonable purpose.

8.1.2 The contractor shall examine all work or materials installed by other contractors and/or sub-contractors, the installation of which may affect the work in his/her contract, and should the same be imperfect, incorrect or insecure, he/she shall notify the contracting officer immediately in order that same be rectified. The contracting officer shall be responsible for instructing the contractor as to what corrective action is required of the contractor.

8.2 MUTUAL RESPONSIBILITY

8.2.1 The contractor shall afford the University, the University's project manager and all sub-contractors reasonable opportunity for the introduction and storage of their materials and equipment and the execution of their work. The contractor shall coordinate all work with adjacent work with all trades so that no portion of the work is delayed or not properly undertaken due to lack or failure of cooperation.

8.2.2 The contractor shall lay out and install his/her work at such time or times and in such manner as to be in compliance with the project schedule and so as to facilitate the general progress of the project.

8.2.3 Before completion of the work contemplated herein, should it be deemed necessary by the University to do any work whatsoever in or about the building or structure other than as provided for in the contract documents, the contractor shall fully cooperate with such other individual or firm as the University may employ to do such work so that such additional work may be performed without unreasonable interference. The contractor shall afford said individual or firm all reasonable facilities for doing such work. The Contractor may not seek an extension of the Contract time as a result of such work. However, Contractor is not entitled to any additional compensation nor shall be entitled to maintain a claim for additional costs or damages as a result of such work.

8.2.4 The contracting officer or his/her University's project manager, and Architect/Engineer shall have access to the work at all times whether it is in preparation or in progress and the contractor shall provide proper facilities for such access and for inspection. The contracting officer reserves the right at his/her option to employ the services of a professional consultant to evaluate any phase of
the work he/she may deem to be in the best interest of the University but no
evaluation performed shall in any way relieve the contractor of his/her
responsibilities under the contract. The consultant's work product shall be
confidential and shall not be disclosed to the contractor. The contractor shall
cooperate with the consultant(s) and provide access to the work and facilities for
inspection. Should any portion of the work or material be found deficient or
defective, the contractor will pay the applicable fees of such consultant and be
responsible for replacing the deficient or defective work as required by the
provisions stated elsewhere herein. In the event that contractor is required to pay
the applicable consultant fees, the contractor shall be entitled to a copy of the result
of the consultant's investigation.

8.2.5 Any costs caused by defective or ill-timed work shall be borne by the party
responsible therefore.

8.2.6 If the contractor should destroy, damage or disturb the work of any other contractor
in or about the building or premises, the contractor shall immediately either replace
the destroyed work and make good the damaged or disturbed work to the
satisfaction of the University's project manager and the contracting officer or shall
reimburse the contractor whose work he/she has destroyed, damaged or disturbed
for the expense of replacing such work.

8.2.7 Should a contractor sustain any damage through any act or omission of any other
contractor having a contract with the University or through any act or omission of
the Architect/Engineer, the contractor shall have no claims against the University for
such damage but shall have a right of action to recover such damages from the
causing party or parties in accordance with 8.4.2 which is included in the contract
with all other such contractors and the Architect/Engineer.

8.3 SUBSTANTIAL COMPLETION/FINAL COMPLETION

8.3.1 At the request of the University, the University's project manager and/or the
Architect/Engineer, the contractor and the University representative shall make a
joint inspection of the work and, if all determine that the work is substantially
completed, the University shall give notice of Substantial Completion for beneficial
use. Such certification shall in no way relieve the contractor of any contractual
obligation or in any way relieve the contractor from responsibility to promptly
complete punch list work.

8.3.2 Use and Possession Prior to Completion: The University shall have the right to take
possession of or use any complete or partially completed part of the work. Prior to
such possession or use, the contracting officer shall furnish the contractor with an
itemized list of work remaining to be performed or corrected on such portions of the
project as are to be possessed or used by the University provided that failure to list
any item of work shall not be deemed an acceptance of any work under the
contract. While the University has such possession or use, the contractor, not
withstanding the provisions of the article of this contract entitled "Permits - Laws
Regulations” shall be relieved of the responsibility for the loss or damage to the
work resulting from University possession or use. If such prior possession or use by the University delays the progress of the work or causes additional expense to the contractor, an equitable adjustment in the contract amount will be made and the contract shall be modified in writing accordingly. Such an equitable adjustment of cost shall be the sole relief available to the contractor.

8.4 CONTRACTOR'S CLAIMS FOR DAMAGES

8.4.1 Any claims made by the contractor against the University for damages or extra costs are governed by and subject to the New Jersey Contractual Liability Act, N.J.S.A. 59:13-1 et.seq. as well as all the provisions in this contract.

8.4.2 Should any contractor, or Architect/Engineer having or who shall hereafter have a contract with the University, by his/her own acts, errors or omissions, damage or unnecessarily delay the work of the owner or other contractors by not properly cooperating with them or by not affording them reasonably sufficient opportunity or facility to perform work as may be specified by reason of which act, error or omission of said contractor, the University's project manager, the Architect/Engineer or any other contractor shall sustain damages including delay damages during the progress of work hereunder, then and in that event, the culpable party agrees to pay all costs and expenses incurred by the damaged contractor(s), the Architect/Engineer due to any such delays and/or damages whether by settlement, compromise mediation or arbitration and the injured contractor, Architect/Engineer shall have a right to redress enforcement in court directly against the culpable party. In addition, the culpable party further agrees to defend, indemnify and save harmless the University from all such claims and damages. Nothing contained in this paragraph shall be construed to relieve the culpable contractor, Architect/Engineer from any liability or damage sustained on account of such acts, errors or omissions.

8.4.3 The University shall not be liable to any contractor for any damages or extra costs caused by any acts or omissions of any person or entity except the University (as specified in this paragraph) and the contractor's exclusive remedy shall be against the culpable party and not the University.

8.5 CONTRACTING OFFICER'S RIGHT TO ACCELERATE

8.5.1 The contracting officer may order and direct the contractor responsible for delay as described in 8.2.2 or, as may be apparent as a result of his/her observation of the work, to accelerate that contractor's work at any particular place or places by increasing his/her forces, working overtime and/or on Saturdays, Sundays and holidays as may be required to enable others to carry on with their work in accordance with the project progress schedule. The cost of such acceleration efforts shall be borne entirely by the contractor and shall not be billed to the University.

8.6 TIME OF COMPLETION - DELAY - LIQUIDATED DAMAGES
8.6.1 In the event of the failure of the contractor to complete the said work within the time stated in the Bid Documents the contractor shall be liable to the University in the sum amount specified in Advertisement for Bids AND/OR the project manual front end per day for each and every calendar day that the said work shall be and remains uncompleted which sum shall be treated as liquidated damages, and not a penalty, for the loss to the University of the use of premises in a completed state of construction, alteration or repair, as the case may be, and for added administrative and inspection costs to the University on account of the delay provided, however, that the liquidated damages provided for herein shall be in addition to other consequential losses or damages that the University may incur by reason of such delay such as, but not limited to, added costs of the project and the cost of furnishing temporary services, if any. The University, from any monies due or to become due to the contractor, may deduct any such items for which the contractor is liable.

8.6.2 The contractor agrees that said work should be prosecuted regularly, diligently and uninterruptedly at such rate of progress as will insure full completion thereof within the time specified. It is expressly understood and agreed by and between the contractor and the University that the time for the completion of the work herein is a reasonable time for the completion of same, taking into consideration the average climatic range and usual industrial conditions prevailing in this locality. If the contractor shall neglect, fail or refuse to complete the work within the time herein specified then the contractor does hereby agree, as a part consideration for the awarding this contract, to pay the University the amount referred to in paragraph 8.6.1. Liquidated damages but not as a penalty.

8.6.3 The said amount is fixed and agreed upon by and between the contractor and the University because of the impracticality and the extreme difficulty of fixing and ascertaining of the actual damages the University would sustain in such event and said amount is agreed to be the amount of damages which the University would sustain.

8.6.4 It is further agreed that time is of the essence of each and every portion of this contract and of the specifications wherein a definite and certain length of time is fixed for the performance of any act whatsoever.

8.6.5 The contractor's reasons for the time extension are listed below. Also the contractor shall not be charged with liquidated damages when the delay in the completion of the work is due to the following:

a) to any preference, priority or allocation order duly issued by the government

b) to unforeseeable cause beyond the control and without the fault or negligence of the contractor restricted to, acts of God except inclement weather or of the public enemy, fires, floods, epidemics, quarantine restrictions, freight embargoes; and

c) to any delays of sub-contractors or suppliers occasioned by any of the causes specified in sub-sections (a) and (b) of this paragraph.
8.6.6 Delete

8.6.7 Payment of liquidated damages will not release Contractor from liability for damages sustained by other contractors as set forth in Section 8.4 hereto.

8.6.8 The University shall have the right to defer the beginning or to suspend the whole or any part of the work herein contracted to be done whenever, in the opinion of the contracting officer, it may be necessary or expedient for the University to do so.

8.6.9 The contractor shall not be entitled to any damages or extra compensation from the University on account of any work performed by the University, any other contractor, the Architect/Engineer, any other party or by reason of any delays whatsoever whether caused by the University or any other party including, but not limited to, the delays mentioned in this contract.

8.7 TIME OF COMPLETION – DELAY – OTHER COSTS

8.7.1 In the event of the failure of the contractor to complete the said work within the time stated in the Bid Documents the contractor shall be liable to the University for all professional fees (i.e. Architect and any other consultants) and associated costs incurred by Rowan during the delay/extended construction duration. All additional professional fees will be deducted from the contractor's contract value via a credit change order. Professional fees and associated expenses are non-negotiable.

8.7.2 Other costs incurred by Rowan as a result of the contractor's failure to complete the said work within the time stated in the Bid Documents are not independent of any liquidated damages outlined within section 8.6 herein.

8.8 INDEMNIFICATION

8.8.1 The contractor shall assume all risk of and responsibility for and agrees to indemnify, defend and save harmless the University, the University's project manager and the Architect/Engineer, their employees, servants and agents, from and against any and all claims, demands, suits, actions, recoveries, judgments and costs and expenses in connection therewith on account of the loss of life, property, injury or damage to the person, body or property of any person or persons whatsoever resulting from the performance of the project or through the negligence of the contractor or any of his/her sub-contractors or through any improper or defective machinery, implements or appliances used by the contractor or his/her sub-contractors in the project or through any act or omission on the part of the contractor of his/her sub-contracts or his/her agents, employees or servants which shall arise from or result directly or indirectly from the work and/or materials supplied under this contract. This indemnification obligation is not limited by but is in addition to the insurance obligations contained in this agreement.

8.8.2 In any and all claims against the University, the Architect/Engineer or any of their agents or employees by any employees of the contractor, any sub-contractor,
8.9 COMMENCEMENT OF WORK

8.9.1 The contract time shall commence on the date of receipt by the contractor of a written notice to proceed and/or University purchase order and/or fully executed University contract issued by the contracting officer. The above document(s) shall be promptly issued by the University. The contractor agrees that contract work shall commence no later than ten (10) calendar days after receipt of at least one of the documents listed above in this Section 8.9.1.

8.9.2 Provided the contract is not terminated pursuant to the paragraph contained within the Instructions to Bidders entitled "Contracts and Bonds", if, in the opinion of the contracting officer, the contractor's delay in furnishing financial responsibility and performance or payment bonds causes a delay in the issuance of any of the documents listed in Section 8.9.1 above, the time to complete the work as specified in the contract may be reduced to reflect such delay.

8.9.3 The contractor shall perform no work under this contract until the required evidence of financial responsibility, insurance and bonds has been furnished. Thereafter, work at other than the contract site may be undertaken. The contractor shall perform no work at the contract site except pursuant to a fully executed contract and/or purchase order.

8.9.4 The notice to proceed, contract and/or purchase order may be issued by the University at its convenience. The Contractor shall not be entitled to any additional compensation caused by any delay in issuing the issuance of the above mentioned documents. The Contractor's sole remedy shall be an extension of the scheduled final completion date in an amount equal to the length of the delay in issuing the contract, purchase order and/or Notice to Proceed.

ARTICLE 9 - CONSTRUCTION PROGRESS

9.1 Deleted

9.1.1 Deleted

9.2 CONSTRUCTION PROGRESS SCHEDULE

9.2.1 This Project shall be completed within the specified number of calendar days from the earlier of the date of the Notice to Proceed, the Purchase Order and/or the Contract.

9.2.2 The project shall be monitored by detailed scheduling system. This system shall be
the basis for the evaluation of all contractors’ performance.

a) The contractor, upon its completion of a project schedule as defined in this section, agrees that the project network schedule is the designated plan for completion of all work in the allotted time and the contractor will assume full responsibility for the prosecution of the work shown. The University shall indicate formal acceptance of the contractors schedule by signing the finalized schedule.

b) The contractor shall furnish sufficient labor, materials and equipment to insure the prosecution of the work in accordance with the approved schedule. If, in the opinion of the contracting officer and/or the University project manager, the contractor falls behind the approved schedule, the contractor shall take such steps as may be necessary to improve his/her progress and the contracting officer may require him/her to increase the number of shifts, days of work and/or the amount of materials and equipment, all without additional cost to the University and as provided in section 8.5.1.

9.2.3 Initial Submittal: The initial schedule, which is submitted to the University by the contractor, shall show a coordinated plan for work for the contractor thereby providing a common basis of acceptance, understanding and communication.

9.2.4 LEFT BLANK

9.2.5 The schedule shall accurately reflect the manner in which the contractor intends to proceed with the project and shall incorporate the impact of all delays and change orders as soon as these factors can be defined. All changes made to the schedule shall be subject to approval by the University. If the contractor desires to revise the logic of the approved schedule so as to reflect a sequence of construction, which differed from that, originally agreed to, he/she must first obtain the approval of the University. If this change extends the completion date of the project or delays the work of other trades, the contractor agrees that these impacts and all associated costs will be considered a claim to be assessed against the contractor and will not be the basis for a project time extension.

9.2.6 Payments to the Contractor:

a) The submission of the computer produced calendar dated schedule shall be an integral part and basic element of the estimate upon which progress payments shall be made pursuant to the provisions of Article 10. The contractor shall be entitled to progress payments only upon receipt by the University of an updated computer produced calendar dated scheduled as outlined in the contract documents.

b) Wherever required by the University’s project manager, the contractor shall provide sufficient documentation to confirm reported progress for any costed items appearing in the scheduling and requisition system; i.e., bills of lading for delivered materials and equipment, etc.

c) Payment to the contractor shall be dependent upon the contractor furnishing all of the information and data which, in the judgment of the University, is
necessary to ascertain actual progress and all the information and data necessary to prepare any necessary revision to the computer produced calendar dated schedule and the network arrow diagram. The University's determination that the contractor has failed or refused to furnish the required information and data shall constitute a basis for withholding payment until the required information and data is furnished and the schedule and/or diagram is prepared or revised on the basis of such information and data.

9.2.7 Deleted

9.2.8 LEFT BLANK

9.2.9 The contractor acknowledges and agrees that the evaluation of project delay will be based upon the project schedule and the following criteria:

a) float time shown on the schedule is not for the exclusive use of either the contractor or the University. It is agreed that float time is available for use by all parties to facilitate the effective use of available resources and to minimize the impact of problems or change orders which may arise during construction. The contractor specifically agrees that the University or its representatives or consultants in conjunction with their review activities or to resolve project problems may use float time. The contractor agrees that there will be no basis for a project time extension as a result of any project problem, change order or delay which only results in the loss of available positive float on the project schedule. The contractor further agrees that there will be no basis for a claim for cost escalation for any activity which is completed on or before its initially required late end date as shown on the initially approved schedule regardless of the justification or any delaying factors which might have results in elimination of float which was originally available for the activity. If the contractor refuses to perform work which is available to them, the University’s project manager or contracting officer may, regardless of the float shown to be available for the work, consider the contractor to be in violation of the contract documents. In such instances, the contracting officer may, without prejudice to any right or remedy and after giving the contractor and his/her surety three (3) working days written notice to forthwith commence and continue with the work with diligence and promptness, terminate the employment of the contractor by the issuance of a written notice to that effect to the contractor and his/her surety at any time subsequent to three (3) working days thereafter should they or either of them fail to comply with the directive of the original three (3) day notice mentioned above.

9.2.10 The final coordinated schedule shall be signed and dated by all Contractors and shall become part of the Contract Documents.

9.3 Each Contractor agrees that they will make no claim for, and have no right to, additional payment or extension of time for completion of the Work, or any other concession because of any misinterpretation or misunderstanding on its part of the Project Schedule, its failure to attend the pre-bid conference, or because of any failure on its part to fully
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

acquaint itself with all conditions relating to the Project Schedule and the manner in which it will be used on the project or because of any other Contractor’s failure to participate properly in the development of a schedule or to perform its contract in accordance with the schedule.

ARTICLE 10 - PAYMENTS

10.1 THE UNIVERSITY SHALL PAY THE CONTRACTOR THE CONTRACT PRICE AS HEREAFTER PROVIDED

10.1.1 The University will make progress payments monthly as the work proceeds or at more frequent intervals as determined by the contracting officer on estimates approved by the contracting officer. Unless otherwise directed, the contractor shall furnish to the University’s project manager within two (2) weeks after a notice to proceed is issued to the contractor, a schedule of values for contract payments regarding labor and material breakdown of the total contract price showing the amount included therein for each principal category of the work in such detail as requested by the University. This schedule of values shall provide the basis for determining progress payments. The schedule, as approved, shall be used only as a basis for the contractor’s estimates for progress payments and approval by the contracting officer does not constitute acceptance of the allocability of costs to a specific element of work. The contractor is cautioned that no payment requests shall be approved until the contracting officer or his/her University’s project manager has approved the schedule of values in writing. The contractor shall use the attachment to the G702 application for payment form.

10.1.2 LEFT BLANK

10.1.3 All material and work covered by progress payments made shall thereupon become the sole property of the University but this provision shall not be construed as relieving the contractor from the sole responsibility for the care and protection of all materials and work upon which payments have been made or the restoration of any damaged work or as waiving the right of the University to require the fulfillment of all of the terms and conditions of the contract.

10.1.4 If performance or payment bonds are required under this contract, the University shall pay the total premiums paid by the contractor to obtain the bonds to the contractor. This payment shall be paid at one time to the contractor together with the first progress payment unless otherwise due after the contractor has (1) furnish the bonds, including co-insurance and reinsurance agreements when applicable, (2) furnished evidence satisfactory to the University (such evidence being in the form of a receipt from the bonding company) of full payment to the surety company and (3) submitted a request for such payment. The payment by the University of the bond premiums to the contractor shall not be made as increments of the individual progress payments and shall be in addition to the contract price.

10.1.5 In addition to other warranties required by provisions of the contract and specifications, the contractor warrants that title to all work, materials and equipment
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

covered by an application for payment will pass to the University, either upon incorporation into the construction or upon receipt of payment by the contractor, whichever occurs first, free and clear of all liens, claims, security interests and encumbrances. This provision shall not be construed as relieving the contractor from sole responsibility for the care and protection of materials and work upon which payments have been made or the restoration of any damaged work or as a waiver by the University of its rights to require fulfillment of all terms of the contract.

10.1.6 Recommendation for approval of a requisition for payment will constitute a representation by the University’s project manager and/or the Architect/Engineer to the contracting officer based on his/her inspections at the site and data contained in the requisition for payment that the work has progressed to the point indicated, that, to the best of his/her knowledge, information and belief, the quality of the work is in accordance with the contract documents and that the contractor is entitled to payment in the amount certified. By recommending approval of a requisition for payment, however, the University’s project manager and/or Architect/Engineer shall not thereby be deemed to represent that he/she has made exhaustive or continuous on-site inspections to check the quality or quantity of the work or that he/she has reviewed the construction means, methods, techniques, sequences or procedures or that he/she has made any examination to ascertain how and for what purpose the contractor has used the monies previously paid on account of the contract sum.

10.1.7 If any corporation licensed to do business in New Jersey shall be or become delinquent in the payment of taxes due the State, unless under an active appeal process, the contracting officer may withhold monies due to the said corporation for the purpose of assuring the payment to the State of such taxes.

10.2 INVOICES

10.2.1 LEFT BLANK

10.2.2 LEFT BLANK

10.2.3 LEFT BLANK

10.2.4 For the purpose of determining if interest begins to accrues under the State's Prompt Payment Act:

a) a proper invoice will be deemed to have been received when it is received in the proper form and with all required attachments by the office designated for receipt of invoices and acceptance of the supplies delivered or services rendered has occurred

b) payment shall be considered made on the date on which a check for such payment is dated

c) payment terms; i.e., "net 20"; offered by the contractor will not be deemed a "required payment date"

d) the following period of time will not be included:
10.3 INTEREST

10.3.1 Interest shall be paid on the amount due to the contractor pursuant to a properly executed State invoice in reference to general condition 10.2 if the required payment is not made on or before the required payment date.

10.3.2 The required payment date shall be sixty (60) calendar days from the receipt of a properly completed and executed invoice.

10.3.3 Interest on amounts due shall be paid to the contractor for the period beginning on the day after the required payment date and ending on the date on which the check for payment is drawn. The interest shall be paid at a rate, which is specified by State Treasurer pursuant to "New Jersey Prompt Payment Act".

10.3.4 No interest charge as required by this provision shall become a debt of the State until it exceeds five dollars ($5.00).

10.3.5 Interest may be paid by separate payment to the contractor but shall be paid within thirty (30) calendar days of payment of the original invoice.

10.3.6 The State Treasurer shall have the right to waive the interest payment for delinquencies due to circumstances beyond the control of the contracting officer or other State or University representatives involved in the processing of contractor invoices including, but not limited to, strikes and natural disasters.

10.3.7 Nothing in this provision nor the New Jersey Prompt Payment Act shall be construed as permitting the accrual of prejudgment interest in the case of a disputed contract for which a notice of claim has been filed pursuant to N.J.S.A. 59:13-3 et.seq. as provided in N.J.S.A. 59:13-8.

10.4 WITHHOLDING PAYMENT FOR NON-DELIVERY OF DATA:

(a) If technical data, such as "as built" drawings, reports, spare parts lists, repair parts lists or the like or instruction books including operational and maintenance manuals or any part thereof are not delivered within the time specified by this contract or are deficient upon delivery, the contracting officer shall withhold from each invoice a percentage in addition to any other retainage required by the contract or the contract price in accordance with the following table:

<table>
<thead>
<tr>
<th>When Total Contract Price Is:</th>
<th>Percentage to be Withheld Is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $250,000</td>
<td>10%</td>
</tr>
<tr>
<td>$250,000 to $1,000,000</td>
<td>5%</td>
</tr>
</tbody>
</table>
(b) The withholding of any sums pursuant to this section shall not be construed as or constitute in any manner a waiver by the University of the contractor's obligation to furnish the data required under this contract. In the event the contractor fails to furnish these items, the University shall have those rights and remedies provided by law and pursuant to this contract in addition to and not in lieu of the sums withheld in accordance with this section.

10.5 FINAL PAYMENT

10.5.1 LEFT BLANK.

10.5.2 LEFT BLANK

10.5.3 LEFT BLANK

ARTICLE 11 - UNCOVERING AND INSPECTION OF WORK

11.1 UNCOVERING AND INSPECTION OF WORK

11.1.1 If any portion of the work is covered prior to inspection conducted by the contracting officer or the University's project manager or Architect/Engineer or any other person, it shall be uncovered for observation. Uncovering and replacement of covering shall be at the installation contractor's expense. The contractor is obligated to advise the contracting officer and the University's project manager of all work scheduled to be covered which is reasonably subject to prior inspection before actual covering.

11.2 CORRECTION OF WORK

11.2.1 The contractor shall promptly correct all work rejected by the contracting officer the University's project manager or the Architect/Engineer as defective or as failing to conform to the contract documents whether observed before or after final acceptance and whether or not fabricated, installed or completed. The contractor shall bear all costs of correcting such rejected work including the University's project manager's or Architect's/Engineer's additional services, if any.

11.2.2 The contractor shall remove from the site all portions of the work, which are defective, or non-conforming and which have not been corrected unless the contracting officer waives removal.

11.2.3 If the contractor does not proceed with the correction of such defective or non-conforming work within a reasonably time, fixed by written notice from the contracting officer, University’s project manager or the Architect/Engineer. The contracting officer may make arrangements for such correction by others and charge the cost of doing so to the contractor and/or his/her sureties. The contracting officer may also remove the defective or non-conforming work and may
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

store the materials or equipment at the expense of the contractor. If the contractor does not pay for the cost of such removal and storage within ten (10) additional days written notice, the contracting officer shall sell such material and equipment at auction or at private sale and shall account for the net proceeds thereof after deducting all of the costs which are the responsibility of the contractor including compensation for the University's project manager or Architect's/Engineer's additional services, if any. If such proceeds of sale do not cover all costs, which the contractor should have borne, the difference shall be charged to the contractor and an appropriate credit change order shall be issued. If the payments then or thereafter due the contractor are not sufficient to cover such amount, the contractor and/or his/her surety shall pay the difference to the University.

11.2.4 The contractor shall also be responsible for the cost of making good all work destroyed or damaged by such correction or removal.

11.2.5 Nothing contained herein shall be construed to establish a period of limitation with respect to any other obligation, which the contractor might have under the contract documents.

11.3 ACCEPTANCE OF DEFECTIVE OR NON-CONFORMING WORK

11.3.1 If the contracting officer determines that the best interests of the University will be served by accepting defective or non-conforming work, he/she may do so instead of requiring its removal and correction. In such instance, a change order will be issued to reflect an appropriate and equitable reduction in the contract sum. Such adjustment shall be effected regardless of final payment having been previously made and the contractor and/or his/her surety shall be responsible for promptly providing any funds due the University as a result thereof.

ARTICLE 12 - PROTECTION OF PERSONS AND PROPERTY

12.1 SAFETY PRECAUTIONS AND PROGRAMS

12.1.1 The contractor shall be responsible for initiating, maintaining and supervising all safety precautions and programs in connection with the work. He/she shall designate a responsible member of his/her organization at the site whose duty shall be the prevention of accidents. This person shall be the contractor's superintendent unless otherwise designated by the contractor in writing to the University and the University's project manager.

12.2 SAFETY OF PERSONS AND PROPERTY

12.2.1 The contractor shall give all notices and comply with all applicable laws, ordinance, rules, regulations and lawful orders of any public authority bearing on the safety of persons or property or their protection from damage, injury or loss, including but not limited to OSHA.

12.2.2 The contractor shall take all necessary precautions for the safety of and shall
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

provide all necessary protection to prevent damage, injury and loss to:

(a) every employee on the work and all other persons who may be affected thereby
(b) all the work and all materials and equipment to be incorporated therein
 whether in storage on or off the site, under the care, custody or control of
 the contractor or any of his/her sub-contractors or sub-sub-contractors.
(c) other property at the site or adjacent thereto, including trees, shrubs,
 lawns, walks, pavements, roadways, structures and utilities not designed
 for removal, relocation or replacement in the course of construction

12.2.3 As required by existing conditions and progress of work, the contractor shall erect
and maintain all necessary safeguards for safety and protection, including but not
limited to rails, night lights, the posting of danger signs and other warnings against
hazards, promulgating safety regulations, notifying owners and users of adjacent
utilities and other means of protection against accidental injury or damage to
persons and property.

12.2.4 When the use or storage of explosives or other hazardous materials or equipment
is necessary for the execution of the work, the contractor shall exercise the utmost
care and shall only carry on such activities under the supervision of properly
qualified personnel.

12.2.5 The contractor shall not load or permit any part of the work to be loaded so as to
endanger the work or any person.

12.2.6 The contractor shall promptly remedy all damage or loss to any property caused in
whole or in part by the contractor, any of his/her sub-contractors, sub-sub-
contractors or anyone directly or indirectly employed by any of these or by anyone
for whose acts any of them may be liable and for which the contractor is
responsible except damage or loss attributable solely to the acts or omissions of
the University, the Architect/Engineer or anyone directly or indirectly employed by
either of them or by anyone of whose acts either of them may be liable and not
attributable to the fault or negligence of the contractor. The foregoing obligations of
the contractor are in addition to his/her obligations stated elsewhere herein.

12.2.7 The contractor shall provide and maintain in good operating condition suitable and
adequate fire protection equipment and services and shall comply with all
reasonable recommendations regarding fire protection made by the representatives
of the property insurance company carrying insurance on the work or by the local
fire chief or fire marshal and other entity with jurisdiction over the site. The area
within the site limits and surrounding areas shall be kept orderly and clean and all
combustible and other rubbish shall be promptly removed from the site.

12.2.8 At all times, the contractor shall protect excavations, trenches, buildings and
materials from rain water, ground water, back-up or leakage of sewers, drains and
other piping and from water of any other origin and shall promptly remove any
accumulation of water. The contractor shall provide and operate all pumps, piping
and other equipment necessary to this end.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

12.2.9 The contractor shall remove snow and ice, which might result in damage or delay.

12.2.10 In the event that contractor fails to comply with the provisions of the Section 12.2, the University may withhold from each invoice a percentage in addition to any other retainage required by the contract or the contract price in accordance with the following table:

<table>
<thead>
<tr>
<th>When Total Contract Price Is:</th>
<th>Percentage to be Withheld Is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $250,000</td>
<td>10%</td>
</tr>
<tr>
<td>$250,000 to $1,000,000</td>
<td>5%</td>
</tr>
<tr>
<td>Over $1,000,000</td>
<td>2%</td>
</tr>
</tbody>
</table>

The withholding of any sums pursuant to this section shall not be construed as or constitute in any manner a waiver by the University of the contractor's obligation to comply with the provisions of this Section 12.2. In the event the contractor fails to comply with the provisions of this Section 12.2, the University shall have those rights and remedies provided by law and pursuant to this contract in addition to and not in lieu of the sums withheld in accordance with this section.

12.3 EMERGENCIES

12.3.1 In any emergency affecting the safety of persons or property, the contractor shall act with diligence at his/her discretion to prevent threatening injury, damage or loss. In such case, he/she shall immediately notify those individuals or entities designated at the pre-construction meeting. The Contractor shall immediately thereafter notify the contracting officer through the University's project manager of the action taken and shall forthwith prepare and submit a detailed and documented report of the occurrence and all actions taken in response thereto.

ARTICLE 13 - INSURANCE AND INDEMNITY

13.1 CONTRACTOR INSURANCE REQUIREMENTS

13.1.1 The Contractor shall secure and maintain in force for the term of the Contract, insurance coverage provided herein. All insurance coverage is subject to the approval of the University and shall be issued by an insurance company authorized to do business in the State of New Jersey and which maintains an A.M. Best rating of A- (VII) or better.

13.1.2 The Contractor shall provide the University with current Certificates of Insurance for all coverage and renewals thereof which must contain the provision that the insurance provided in the certificate shall not be canceled for any reason except after thirty (30) days written notice to the University. All insurance required herein shall contain a waiver of subrogation in favor of the University. All insurance required herein, except Workers' Compensation and Owners and Contractors Protective, shall name ROWAN University, the State of New Jersey, the architect/engineer and University's Project Manager as additional insureds.
13.1.2 Commercial General Liability insurance written on an occurrence form including independent contractor liability, products/completed operations liability, contractual liability, covering but not limited to the liability assumed under the indemnification provisions of this contract. Coverage for bodily injury and property damage claims arising out of the professional acts of the general contractor and subcontractors shall also be included. The policy shall not include any endorsement that restricts or reduces coverage as provided by the ISO CG0001 form without the approval of the University. The minimum limits of liability shall not be less than a combined single limit of one million dollars ($1,000,000) per occurrence, two million dollars ($2,000,000) general aggregate, three million dollars ($3,000,000) product/completed operations aggregate. The Products and Completed Operations insurance shall be maintained for two (2) years after final payment. A “per project endorsement” shall be included, so that the general aggregate limit applies solely to the project that is the subject of this contract.

13.1.3 Comprehensive Automobile Liability covering owned, non-owned, and hired vehicles. The limits of liability shall not be less than a combined single limit of one million dollars ($1,000,000) per occurrence.

13.1.4 Worker's Compensation Insurance applicable to the laws of the State of New Jersey and other State or Federal jurisdiction required to protect the employees of the Contractor and any Subcontractor who will be engaged in the performance of this Contract. The certificate must so indicate that no proprietor, partner, executive officer or member is excluded. This insurance shall include Employers' Liability Protection with a limit of liability not less than one million dollars ($1,000,000) bodily injury, each occurrence, one million dollars ($1,000,000) disease, each employer, and two million dollars ($2,000,000) disease, aggregate limit. Including the employer's liability insurance under the umbrella insurance can satisfy the limit requirements.

13.1.5 The Contractor shall obtain and maintain a separate Owners and Contractor's Protective Liability Insurance Policy for the same limits of liability as specified for the Commercial General Liability Insurance in the name of the University, the State of New Jersey. The Architect/Engineer, and the University's Project Manager are to be the named as additional insured. The policy shall be maintained in force for the term of the Project or one year, whichever is longer.

13.1.6 Excess Liability, umbrella insurance form, applying excess of primary to the commercial general liability, commercial automobile liability and employer's liability insurance shall be provided with minimum limits of three million dollars ($3,000,000) per occurrence, three million dollars ($3,000,000) general aggregate, and three million dollars ($3,000,000) products/completed operations.

13.1.6.1 The General Liability insurance General Aggregate and Umbrella Excess Liability limits shall apply and be written exclusively, in total, to this Project only. A per project endorsement for all coverage's and limits must be included in each policy.

a) Bodily injury and property damage insurance policies shall be so
written as to provide coverage for special hazards where such hazards will be incidental to subcontractors’ work.

13.1.7 The contractor shall require all its subcontractors and sub-subcontractors and any other company employed by the contractor working on this project to maintain during the life of the contract agreement(s) between itself and its sub-contractors, along with agreements between its subcontractors and their subcontractors, until final acceptance of the work by the University the insurance limits and requirements as defined above. It is a contractor option to determine the amount of excess liability it will require its subcontractors to carry however all insurance shall be written on a “per project” basis. The contractor shall be responsible for obtaining certificates of insurance from all of its subcontractors, sub-subcontractors, etc. for all coverage and renewals thereof for each company either hired directly by the contractor or hired by the contractors subcontractors working on this project prior to each company beginning work on the project. The contractor shall provide copies of all subcontractor certificates of insurance to the University.

a) ALL SUBCONTRACTOR CERTIFICATES MUST BE SUBMITTED PRIOR TO THE START OF WORK ON THE SITE.

13.1.8 Prior to commencement of construction, the contractor shall provide four (4) certified copies of such insurance policy or certificate of such insurance to be delivered to the University’s project manager and the University.

13.1.9 Should the contractor fail to comply with all insurance requirements indicated in the contract documents and provide satisfactory evidence of such compliance to the University within seven (7) calendar days of the issuance of a Notice to Proceed, contract and/or receipt by the contractor of a University purchase order on this project from the University, the contracting officer will consider the contractor to be in violation of the contract documents. Upon such declaration of a breach of contract, the contracting officer through the University’s project manager without prejudice to any other right or remedy available to the University and after giving the contractor and/or its surety three (3) working days written notice can either terminate the employment of the contractor for this project or purchase the required insurance. If the University chooses to purchase the required insurance it will deduct the cost of said insurance from the contact amount agreed upon with the contractor. Under either option selected by the University the contractor will have no recourse against the University.

13.2 INSURANCE TO BE CARRIED BY THE UNIVERSITY

13.2.1 The University shall provide insurance protection in the form of a Builders Risk Insurance or similar Policy upon the structure for which the Work on this Contract is to be done. The structure will be insured for 100% of the insurable replacement value thereof including materials, owned by the University, in place or to be used as part of the permanent construction including surplus materials. Should the structure be damaged or destroyed as a result of the contractors’ negligence the
University will subrogate against the contractor for the cost to repair or replace the damage to bring the structure back to the condition intended under this contract.

13.2.2 This insurance shall not protect against damage or loss to any of the Contractor's or Subcontractor's property including but not limited to tools, equipment, scaffolding, staging towers or forms, Contractor's materials and sheds or other temporary structures erected for used by the Contractor or Subcontractors. It is understood that the Contractor will at their own expense, carry all insurance which may be required to provide the necessary protection against such loss or damage herein described which insurance shall contain a waiver of any right of subrogation against the University.

13.2.3 The insurance procured by the University under this paragraph may provide for a deductible. The Contractor shall assume the responsibility for any deductible for any builder's risk loss it may make claim for under this policy.

13.2.4 The Contractor shall immediately notify the University, in writing and take any other appropriate steps as may be required under the standard Builder's Risk Insurance Policy in effect in the event of any loss. Prior to the acceptance of the building by the University, the Contractor shall, at the University's option, replace and repair the damaged Work as originally provided in the drawings and specifications at no additional compensation to that provided in the original contract.

13.2.5 All losses will be adjusted with, and payable to, the University.

13.2.6 The Contractor shall not include any cost for Builders Risk insurance premiums as described herein. However, this provision shall not relieve the Contractor from their obligation to complete, according to plans and specifications, the project covered by the contract, and the Contractor and their Surety shall be obligated to full performance of the Contractor's undertaking.

ARTICLE 14 - CHANGES IN THE WORK

14.1 CHANGES IN THE WORK

14.1.1 Changes to this Contract may only be accomplished by a Change Order issued in accordance with the procedures set forth in this Article 14 and Division #1 of the Specifications. The Change Order may result in an increase, decrease or have no effect upon the Contract Price only. The contract time cannot and will not be adjusted for any reason.

14.1.2 LEFT BLANK

14.1.3 Change Orders shall include all impacts that the change to the work may have upon the performance of the job and shall resolve all issues between the parties related, either directly or indirectly, to the change. By executing the Change Order,
the Contractor waives the right to assert any future claims of any kind caused in whole or in part by the change.

14.2 OWNER DIRECTED CHANGES

14.2.1 At any time after execution of this contract by all parties the contracting officer may make any change in the work within the general scope of the contract including, but limited to, changes as follows:

a) in the specifications, including drawings and designs;
b) in the method or manner of performance of the work;
c) in the University furnished facilities, equipment, materials, services or site;
d) directing acceleration in the performance of the work.

14.2.2 LEFT BLANK

14.3 LEFT BLANK

14.3.1 LEFT BLANK

14.4 FAILURE TO PROVIDE NOTIFICATION

14.4.1 In the event that the Contractor fails to provide the immediate notification to the University's project manager and/or to complete the "Change Order Request" pursuant to and as specified elsewhere in the contract documents with the supporting documentation as set forth in the Specifications, the Contractor shall have waived any and all claims for additional compensation related to said changes or conditions encountered.

14.5 LEFT BLANK

14.5.1 LEFT BLANK

14.5.2 LEFT BLANK

14.5.3 In the event that the parties cannot agree to a lump sum amount for a Change Order, the University's contracting officer shall be permitted to order the Contractor to completed the work covered by the Change Order on a time and material basis, under procedures established by the University's project manager to ensure the proper accounting of direct labor and direct material costs. The Contractor shall be allowed the same allowance for overhead and profit as set forth in the contract documents.

14.6 LEFT BLANK

14.6.1 LEFT BLANK

14.6.2 LEFT BLANK
14.7 CONTINUATION OF THE WORK

14.7.1 In order to avoid delays in the progress of work or when, in the best interest of the University, the contracting officer may, at his/her discretion, direct the contractor in writing to proceed with a change without a prior or final agreement on costs and/or scope of work. Such direction shall be in the form of an unpriced Change Order or written direction. If the contractor has or intends to assert a request for additional compensation under this article, he/she shall turn over to the University’s project manager in sufficient detail and in accordance with all contract document requirements hereof all necessary information and costs as required by the contacting officer after receipt of an unpriced change order or written direction.

14.7.2 Where the cost of property made obsolete or excess as a result of a change is included in the contractor's request for adjustment, the contracting officer shall have the right to prescribe the manner of disposition of such property.

ARTICLE 15 - ASSIGNMENT OF ANTITRUST CLAIM(S)

15.1 ASSIGNMENT OF ANTITRUST CLAIM(S)

15.1.1 The contractor recognizes that in actual economic practice, overcharges resulting from antitrust violations are, in fact, usually borne by the ultimate purchaser. Therefore, and as a consideration for executing this contract, the contractor, acting herein by and through its duly authorized agent, hereby conveys, sells, assigns and transfers to the University all right, title and interest to all claims and causes of action it may now or hereafter acquire under the antitrust laws of the United States or the State of New Jersey relating to the particular goods or services purchased or acquired by the University pursuant to this contract.

In connection with this agreement, the following are the express obligations of the contractor:

a) it will take no action, which will in any way diminish the value of the rights conveyed or assigned hereunder
b) it will advise the University:
 (1) in advance of its intention to commence any action on its own behalf regarding such claim or cause(s) of action
 (2) immediately upon becoming aware of the fact that action has been commenced on its behalf by some other person(s) of the pendency of such action
 c) it will notify the defendants in any antitrust suit of the fact of the within assignment at the earliest practicable opportunity after the contractor has initiated an action on its behalf or becomes aware that such an action has been filed on his/her behalf by any other person; a copy of such notice will be sent to the University.

Furthermore, it is understood and agreed that in the event any payment under any such claim or cause of action is made to the contractor, it shall promptly pay over
ARTICLE 16 - AFFIRMATIVE ACTION REQUIREMENTS

16.1 POLICY STATEMENT

It has long been the policy of the University to promote equal employment opportunity by prohibiting discrimination in employment and requiring affirmative action in the performance of contracts funded by the University. This policy has been reinforced and expended by an act of the legislature. The new statute, New Jersey Public Law 1975, Chapter 19, provides that no public works contractor can be awarded nor any monies paid until the prospective contractor has agreed to contract performance, which complies with the approved affirmative action plan. The law applies to each political subdivision and agency of the State and includes procurement and service contracts as well as construction contracts. This section was prepared to explain the affirmative action requirements and procedures for public agencies awarding contracts and for contractors bidding on contracts. To assure effective implementation of the affirmative action law while allowing the business operations of a government to proceed efficiently, these regulations are designed to minimize administrative paperwork and delays.

16.2 MANDATORY LANGUAGE

During the performance of this contract, the contractor agrees as follows:

a) Where applicable, the contractor or sub-contractor will not discriminate against any employee or applicant for employment because of age, race, creed, color, national origin, ancestry, marital status, sex, affectional or sexual orientation. The contractor will take affirmative action to insure that such applicants are recruited and employed and that employees are treated during employment without regard to their age, race, creed, color, national origin, ancestry, marital status, sex, affectional or sexual orientation. Such action shall include, but not be limited to, the following: employment, upgrading, demotion, transfer, recruitment or recruitment advertising, lay-off or termination, rates of pay or other forms of compensation and the selection for training, including apprenticeship. The contractor agrees to post in conspicuous places available to employees and applicants for employment notices to be provided by the public agency compliance officer setting forth provisions of this non-discrimination clause.

b) Where applicable, the contractor or sub-contractor will, in all solicitations or advertisements for employees placed by or on behalf of the contractor, state that all qualified applicants will receive consideration for employment without regard to age, race, creed, color, national origin, ancestry, marital status, sex, affectional or sexual orientation.

c) Where applicable, the contractor or sub-contractor will send to each labor union or representative of workers with which it has a collective bargaining agreement or other contract or understanding a notice to be provided by the agency contracting officer advising the labor union or worker's representative of the contractor's commitments under this act and shall post copies of the notice...
in conspicuous places available to employees and applicants for employment.
d) Where applicable, the contractor or sub-contractor agrees to comply with any regulations promulgated by the Treasurer pursuant to P.L. 1975, c.127, as amended and supplemented from time to time.
e) When hiring workers in each construction trade, the contractor or sub-contractor agrees to attempt in good faith to employ minority and female workers in each construction trade consistent with the applicable employment goal prescribed by N.J.A.C. 17:27-7.3 provided, however, that the affirmative action officer may, in its discretion, exempt a contractor or sub-contractor from compliance with the good faith procedures prescribed by the following provisions (a), (b) and (c) as long as the affirmative action office is satisfied that the contractor is employing workers provided by a union which provides evidence in accordance with standards prescribed by the affirmative action office that its percentage of active, "card carrying" members who are minority and female workers is equal to or greater than the applicable employment goal prescribed by N.J.A.C. 17:27-7.3 promulgated by the Treasurer pursuant to P.L. 1975, c.127, as amended and supplemented from time to time. The contractor or sub-contractor agrees that a good faith effort shall include compliance with the following procedures:

1) If the contractor or sub-contractor has a referral agreement or arrangement with a union for a construction trade, the contractor or sub-contractor shall, within three (3) days of the contract award, seek assurances from the union that it will cooperate with the contractor or sub-contractor as it fulfills its affirmative action obligations under this contract and in accordance with the rules promulgated by the Treasurer pursuant to P.L. 1975, c.127, as it is amended and supplemented from time to time. If the contractor or sub-contractor is unable to obtain said assurances from the construction trade union at least five (5) days prior to the commencement of construction work, the contractor or sub-contractor agrees to directly attempt to hire minority and female workers consistent with the applicable employment goal. If the contractor's or sub-contractor's prior experience with a construction trade union, regardless of whether the union has provided said assurances, indicates a significant possibility that the union will not refer sufficient minority and female workers consistent with the applicable employment goal, the contractor or sub-contractor agrees to be prepared to hire minority and female workers directly consistent with the applicable employment goal by complying with the hiring procedures prescribed under (2) below and the contractor or sub-contractor further agrees to take immediate said action if it determines or is so notified by the affirmative action office that the union is not referring minority and female workers consistent with the applicable employment goal.

2) If the hiring of a workforce consistent with the employment goal has not or cannot be achieved for each construction trade by adhering to the procedures of (1) above or if the contractor or sub-contractor does not have
a referral agreement or arrangement with a union for a construction trade, the contractor or sub-contractor agrees to take the following actions consistent with the applicable county employment goals.

(a) to notify the public agency compliance officer, affirmative action office and at least one (1) approved minority referral organization of its manpower needs and request the referral of minority and female workers;

(b) to notify any minority and female workers who have been listed with it as awaiting available vacancies;

(c) prior to commencement of work to request the local construction trade union, if the contractor or sub-contractor has a referral agreement or arrangement with a union for the construction trade, to refer minority and female workers to fill job openings;

(d) to leave standing requests for additional referral to minority and female workers with the local construction trade union if the contractor or sub-contractor has a referral agreement or arrangement with a union for the construction trade, the State training and employment service and the other approved referral sources in the area until such time as the workforce is consistent with the employment goal;

(e) if it is necessary to lay-off some of the workers in a given trade on the construction site to assure, consistent with the applicable State and Federal statutes and court decisions, that sufficient minority and female employees remain on the site consistent with the employment goal and to employ any minority and female workers laid-off by the contractor or on any other construction site in the area on which its workforce composition is not consistent with an employment goal established pursuant to rules implementing P.L. 1975, c.127;

(f) to adhere to the following procedure when minority and female workers apply or are referred to the contractor or sub-contractor:

(i) if said individuals have never previously received any document or certification signifying a level of qualification lower than that required, the contractor or sub-contractor shall determine the qualifications of such individuals and, if the contractor’s or sub-contractor’s workforce in each construction trade is not consistent with the applicable employment goal, it shall employ such persons which satisfy appropriate qualification standards provided, however, that a contractor or sub-contractor shall determine that the individual at least possess the skills and experience recognized by any workers’ skill and experience classification determination which may have been made by a public agency compliance officer, union, apprentice program or referral agency provided the referral agency is acceptable to the affirmative action office and provided further that, if necessary, the contractor or sub-contractor shall hire minority and female workers who qualify as trainees pursuant to these regulations. All of the requirements of this paragraph, however, are limited by the provisions of paragraph (3) below.

(ii) if the contractor’s or sub-contractor’s workforce is consistent with
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

the applicable employment goal, the name of said minority or female group individual shall be maintained on a waiting list for the first consideration in the event the contractor's or sub-contractor's workforce is no longer consistent with the applicable employment goal.

(iii) If, for any reason, said contractor or sub-contractor determines that a minority individual or a female is not qualified or if the individual qualifies as an advanced trainee or apprentice, the contractor or sub-contractor shall inform the individual in writing with the reasons for the determination and maintain a copy in its files and send a copy to the public agency compliance officer and to the affirmative action office.

(g) to keep a complete and accurate record of all requests made for the referral of workers in any trade covered by the contract on forms made available by the affirmative action office and shall be submitted promptly to that office upon request.

3) The contractor or sub-contractor agrees that nothing contained in (2) preceding provision shall preclude the contractor or sub-contractor from complying with the hiring hall or apprenticeship provisions in any applicable bargaining agreement or hiring hall arrangement and, where required by custom or agreement, it shall send journeymen and trainees to the union for referral or to the apprenticeship program for admission pursuant to such agreement or arrangement provided, however, that where the practices of a union or apprenticeship program will result in the exclusion of minorities and females or the failure to refer minorities and females consistent with the county employment goal, the contractor or sub-contractor shall consider for employment persons referred pursuant to said provisions (2) without regarding to such agreement or arrangement; provided further, however, that the contractor or sub-contractor shall not be required to employ minority and female advanced trainees and trainees in numbers which result in the employment of advanced trainees and trainees as a percentage of the total workforce for the construction trade which percentage significantly exceeds the apprentice to journey worker ratio specified in the applicable collective bargaining agreement or, in the absence of a collective bargaining agreement, exceeds the ratio established by practice in the area for said construction trade. Also, the contractor or sub-contractor agrees that in implementing the procedures of the preceding provisions (2) it shall, where applicable, employ minority and female workers residing within the geographical jurisdiction of the union.

4) The contractor agrees to complete an initial manning report on forms provided by the affirmative action office on in the form prescribed by the affirmative action office and submit a copy of said form no later than three (3) days after signing a construction contract provided, however, that the public agency may extend in a particular case the allowable time for submitting the form to no more than fourteen (14) days and to submit a copy of the monthly project manning report once a month by the seventh (7th) work day of each month thereafter for the duration of this contract to the affirmative action office and to the public agency compliance officer.
ROWAN UNIVERSITY
SECTION II
GENERAL CONDITIONS

The contractor agrees to cooperate with the public agency in the payment of budgeted funds as is necessary for on-the-job and off-the-job programs for outreach and training of minority and female trainees employed on the construction site.

5) The contractor and its sub-contractors shall furnish such reports or other documents to the affirmative action office as may be requested by the office from time to time in order to carry out the purposes of these regulations and public agencies shall furnish such information as may be requested by the affirmative action office for conducting a compliance investigation pursuant to Sub-Chapter 10 of the Administrative Code, N.J.A.C. 17:27.

END OF SECTION II
THIS AGREEMENT, made this day of ____________, 2018, by and between ROWAN UNIVERSITY, herein called “Owner”, acting herein through its VP of Finance and CFO, and

CONTRACTOR NAME
CONTRACTOR ADDRESS
CONTRACTOR CITY, STATE & ZIP CODE

A Corporation, State of New Jersey, hereinafter called CONTRACTOR. The Contractor hereby agrees with the Owner to commence and complete the construction described as follows:

CREATES Lab Renovation
PROJECT NO. 77044

The Contractor agrees to furnish all labor, material, equipment and services necessary to construct and complete the project as detailed in Rowan University’s Bid No. ____________, dated ____________, hereinafter called the Project, for the sum of ________________, to include the base bid items and to include all work in connection therewith, under the terms as stated in the Bid Documents, and at his (its or their) own proper cost and expense to furnish all the materials, supplies, machinery, equipment tools, superintendence, labor, insurance, and services necessary to complete the said project in accordance with the conditions and prices stated in the Contract Documents, as detailed on Exhibit “A” attached hereto and made a part hereof.

Unless the Notice to Proceed specifies a different date, the contractor hereby agrees to commence work under this contract as soon as possible but no later than ________________, and to fully complete the project by 9/6/2018. Time is the essence for the completion of this contract. The Contractor further agrees to pay, as liquidates damages, the sum of $1,000.00 for each consecutive calendar day thereafter as hereinafter provided in Article 8 of the General Conditions.

The OWNER agrees to pay the CONTRACTOR for the performance of the contract, subject to additions and deductions, as provided in the General Conditions of the Contract Specifications, and to make payments on account thereof as provided in Article 10 of the General Conditions and Section 012500 – Contract Modification Procedures.
"The Contractor shall comply with the provisions of Chapter 33, of Title 52 of the Revised Statues (R.S. 52:33-1 et seq) requiring that preference be given to the use of domestic materials or as same may be governed by Federal Law or Regulation.

During the performance of this contract, the contractor agrees as follows:

The contractor or subcontractor, where applicable, will not discriminate against any employee or applicant for employment because of age, race, creed, color, national origin, ancestry, marital status, affectionsal or sexual orientation, gender identity or expression, disability, nationality or sex. Except with respect to affectionsal or sexual orientation and gender identity or expression, the contractor will ensure that equal employment opportunity is afforded to such applicants in recruitment and employment, and that employees are treated during employment, without regard to their age, race, creed, color, national origin, ancestry, marital status, affectionsal or sexual orientation, gender identity or expression, disability, nationality or sex. Such equal employment opportunity shall include, but not be limited to the following: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship. The contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided by the Public Agency Compliance Officer setting forth provisions of this nondiscrimination clause.

The contractor or subcontractor, where applicable will, in all solicitations or advertisements for employees placed by or on behalf of the contractor, state that all qualified applicants will receive consideration for employment without regard to age, race, creed, color, national origin, ancestry, marital status, affectionsal or sexual orientation, gender identity or expression, disability, nationality or sex.

The contractor or subcontractor, where applicable, will send to each labor union or representative of workers with which it has a collective bargaining agreement or other contract or understanding, a notice, to be provided by the agency contracting officer advising the labor union or workers' representative of the contractor's commitments under this act and shall post copies of the notice in conspicuous places available to employees and applicants for employment.

The contractor or subcontractor where applicable, agrees to comply with any regulations promulgated by the Treasurer pursuant to N.J.S.A. 10:5-31 et seq., as amended and supplemented from time to time and the Americans with Disabilities Act.

When hiring or scheduling workers in each construction trade, the contractor or subcontractor agrees to make good faith efforts to employ minority and women workers in each construction trade consistent with the targeted employment goal prescribed by N.J.A.C. 17:27-7.2; provided, however, that the Division may, in its discretion, exempt a contractor or subcontractor from compliance with the good faith procedures prescribed by the following provisions, A, B and C, as long as the Division is satisfied that the contractor or subcontractor is employing workers provided by a union which provides evidence, in accordance with standards prescribed by the Division, that its percentage of active "card carrying" members who are minority and women workers is equal to or greater than the targeted employment goal established in accordance with N.J.A.C. 17:27-7.2.
The contractor or subcontractor agrees that a good faith effort shall include compliance with the following procedures:

(A) If the contractor or subcontractor has a referral agreement or arrangement with a union for a construction trade, the contractor or subcontractor shall, within three business days of the contract award, seek assurances from the union that it will cooperate with the contractor or subcontractor as it fulfills its affirmative action obligations under this contract and in accordance with the rules promulgated by the Treasurer pursuant to N.J.S.A. 10:5-31 et. seq., as supplemented and amended from time to time and the Americans with Disabilities Act. If the contractor or subcontractor is unable to obtain said assurances from the construction trade union at least five business days prior to the commencement of construction work, the contractor or subcontractor agrees to afford equal employment opportunities to minority and women workers directly, consistent with this chapter. If the contractor's or subcontractor's prior experience with a construction trade union, regardless of whether the union has provided said assurances, indicates a significant possibility that the trade union will not refer sufficient minority and women workers consistent with affording equal employment opportunities as specified in this chapter, the contractor or subcontractor agrees to be prepared to provide such opportunities to minority and women workers directly, consistent with this chapter, by complying with the procedures prescribed under (B) below; and the contractor or subcontractor further agrees to take said action immediately if it determines or is so notified by the Division that the union is not referring minority and women workers consistent with the equal employment opportunity goals set forth in this chapter.

(B) If good faith efforts to meet targeted employment goals have not or cannot be met for each construction trade by adhering to the procedures of (A) above, or if the contractor does not have a referral agreement or arrangement with a union for a construction trade, the contractor or subcontractor agrees to take the following actions:

(1) To notify the public agency compliance officer, the Division, and minority and women referral organizations listed by the Division pursuant to N.J.A.C. 17:27-5.3, of its workforce needs, and request referral of minority and women workers;

(2) To notify any minority and women workers who have been listed with it as awaiting available vacancies;

(3) Prior to commencement of work, to request that the local construction trade union refer minority and women workers to fill job openings, provided the contractor or subcontractor has a referral agreement or arrangement with a union for the construction trade;
(4) To leave standing requests for additional referral to minority and women workers with the local construction trade union, provided the contractor or subcontractor has a referral agreement or arrangement with a union for the construction trade, the State Training and Employment Service and other approved referral sources in the area;

(5) If it is necessary to lay off some of the workers in a given trade on the construction site, layoffs shall be conducted in compliance with the equal employment opportunity and non-discrimination standards set forth in this regulation, as well as with applicable Federal and State court decisions;

(6) To adhere to the following procedure when minority and women workers apply or are referred to the contractor or subcontractor:

(i) If said individuals have never previously received any document or certification signifying a level of qualification lower than that required in order to perform the work of the construction trade, the contractor or subcontractor shall in good faith determine the qualifications of such individuals. The contractor or subcontractor shall hire or schedule those individuals who satisfy appropriate qualification standards in conformity with the equal employment opportunity and non-discrimination principles set forth in this chapter. However, a contractor or subcontractor shall determine that the individual at least possesses the requisite skills, and experience recognized by a union, apprentice program or a referral agency, provided the referral agency is acceptable to the Division. If necessary, the contractor or subcontractor shall hire or schedule minority and women workers who qualify as trainees pursuant to these rules. All of the requirements, however, are limited by the provisions of (C) below.

(ii). The name of any interested women or minority individual shall be maintained on a waiting list, and shall be considered for employment as described in paragraph (i) above, whenever vacancies occur. At the request of the Division, the contractor or subcontractor shall provide evidence of its good faith efforts to employ women and minorities from the list to fill vacancies.

(iii). If, for any reason, said contractor or subcontractor determines that a minority individual or a woman is not qualified or if the individual qualifies as an advanced trainee or apprentice, the contractor or subcontractor shall inform the individual in writing of the reasons for the determination, maintain a copy of the determination in its files, and send a copy to the public agency compliance officer and to the Division.
(7). To keep a complete and accurate record of all requests made for the referral of workers in any trade covered by the contract, on forms made available by the Division and submitted promptly to the Division upon request.

(C) The contractor or subcontractor agrees that nothing contained in (B) above shall preclude the contractor or subcontractor from complying with the union hiring hall or apprenticeship policies in any applicable collective bargaining agreement or union hiring hall arrangement, and, where required by custom or agreement, it shall send journeymen and trainees to the union for referral, or to the apprenticeship program for admission, pursuant to such agreement or arrangement. However, where the practices of a union or apprenticeship program will result in the exclusion of minorities and women or the failure to refer minorities and women consistent with the targeted county employment goal, the contractor or subcontractor shall consider for employment persons referred pursuant to (B) above without regard to such agreement or arrangement; provided further, however, that the contractor or subcontractor shall not be required to employ women and minority advanced trainees and trainees in numbers which result in the employment of advanced trainees and trainees as a percentage of the total workforce for the construction trade, which percentage significantly exceeds the apprentice to journey worker ratio specified in the applicable collective bargaining agreement, or in the absence of a collective bargaining agreement, exceeds the ratio established by practice in the area for said construction trade. Also, the contractor or subcontractor agrees that, in implementing the procedures of (B) above it shall, where applicable, employ minority and women workers residing within the geographical jurisdiction of the union.

After notification of award, but prior to signing a construction contract, the contractor shall submit to the public agency compliance officer and the Division an initial project workforce report (Form AA 201) provided to the public agency by the Division for distribution to and completion by the contractor, in accordance with N.J.A.C. 17:27-7. The contractor also agrees to submit a copy of the Monthly Project Workforce Report once a month thereafter for the duration of this contract to the Division and to the public agency compliance officer.

The contractor agrees to cooperate with the public agency in the payment of budgeted funds, as is necessary, for on-the-job and/or off-the-job programs for outreach and training of minorities and women.

(D) The contractor and its subcontractors shall furnish such reports or other documents to the Division of Public Contracts Equal Employment Opportunity Compliance as may be requested by the Division from time to time in order to carry out the purposes of these regulations, and public agencies shall furnish such information as may be requested by the
IN WITNESS WHEREOF, the parties to these presents have executed this contract electronically, which shall be deemed an original, in the year and day first above mentioned.

ATTEST: for Rowan University

Witness

Joseph F. Scully Jr.
Sr. VP of Finance, Chief Financial Officer

(SEAL)

Contractor Date

Title

WARRANTY:

It is hereby certified and warranted by the undersigned contractor and by the undersigned principals or officers thereof, for said Contractor and for themselves, personally and individually, that no person has been employed to solicit or secure this Contract in violation of the provisions of Section 10, Chapter 48 of the Laws of 1954, N.J.S.A 52:34-15, or in violation of any other laws of the State of New Jersey; and it is further warranted that all applicable laws and regulations shall be complied with in the performance of this contract.

(SEAL)

Contractor Date

By

Title

Address

City State Zip Code
Exhibit A

Rowan University Invitation for Bid

PROJECT MANUAL

INSTRUCTIONS TO BIDDERS AND GENERAL CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Instructions to Bidders</td>
<td>July 25, 2017</td>
<td>1-7</td>
</tr>
<tr>
<td>II</td>
<td>General Conditions</td>
<td>July 25, 2017</td>
<td>1-60</td>
</tr>
<tr>
<td>III</td>
<td>Construction Contract</td>
<td>July 25, 2017</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>Allowance Authorization Form</td>
<td>October 2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Allowance Charge Request Form</td>
<td>September 2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Request for Information Form</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Change Order Request Form</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Change Order Form</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hourly Labor Rate Breakdown Form</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Daily Job Report Form</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Application and Certificate for Payment Form (AIA G702)</td>
<td>---</td>
<td>Pages 1 through 2</td>
</tr>
<tr>
<td></td>
<td>Attachment to G702 Certification</td>
<td>---</td>
<td>Pages 1 through 2</td>
</tr>
<tr>
<td></td>
<td>For Payment</td>
<td>---</td>
<td>Page 1</td>
</tr>
<tr>
<td></td>
<td>Contractor’s Partial or Final Release</td>
<td>---</td>
<td>Page 1</td>
</tr>
<tr>
<td></td>
<td>And Waiver of Liens</td>
<td>---</td>
<td>Page 1</td>
</tr>
<tr>
<td></td>
<td>Rowan Tax Exempt Letter</td>
<td>---</td>
<td>Page 1</td>
</tr>
<tr>
<td></td>
<td>Consent of Surety Company to Final Payment (AIA G707)</td>
<td>---</td>
<td>Page 1</td>
</tr>
</tbody>
</table>

DIVISION 01 GENERAL REQUIREMENTS DATED July 25, 2017

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>011000</td>
<td>Summary of Work</td>
<td>011000-1 to 011000-4</td>
</tr>
<tr>
<td>011400</td>
<td>Work Restrictions</td>
<td>011400-1 to 011400-3</td>
</tr>
<tr>
<td>012200</td>
<td>Unit Prices</td>
<td>012200-1</td>
</tr>
<tr>
<td>012300</td>
<td>Alternates</td>
<td>012300-1 to 012300-2</td>
</tr>
<tr>
<td>012400</td>
<td>Procedures and Controls</td>
<td>012400-1 to 012400-17</td>
</tr>
<tr>
<td>012500</td>
<td>Contract Modification Procedures</td>
<td>012500-1 to 012500-5</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
<td>012900-1 to 012900-6</td>
</tr>
<tr>
<td>013100</td>
<td>Coordination</td>
<td>013100-1 to 013100-3</td>
</tr>
<tr>
<td>013200</td>
<td>Construction Progress Schedule</td>
<td>013200-1 to 013200-6</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
<td>013300-1 to 013300-15</td>
</tr>
<tr>
<td>014000</td>
<td>Quality Control Requirements</td>
<td>014000-1 to 014000-4</td>
</tr>
<tr>
<td>014100</td>
<td>Testing Services</td>
<td>014100-1 to 014100-4</td>
</tr>
<tr>
<td>014200</td>
<td>Reference Standards</td>
<td>014200-1 to 14200-5</td>
</tr>
<tr>
<td>015000</td>
<td>Construction Facilities & Temporary Controls</td>
<td>015000-1 to 015000-8</td>
</tr>
<tr>
<td>017700</td>
<td>Contract Closeout</td>
<td>017700-1 to 017700-9</td>
</tr>
<tr>
<td>017820</td>
<td>Operation and Maintenance Data</td>
<td>017820-1 to 017820-8</td>
</tr>
<tr>
<td>018200</td>
<td>Demonstration and Training</td>
<td>018200-1 to 018200-5</td>
</tr>
</tbody>
</table>

TECHNICAL SPECIFICATIONS

Rowan University
CREATES Lab Renovation
Rowan Project No. 77044
CONSTRUCTION CONTRACT
June 1, 2018
Section III - 8
DIVISION XX
Section XXXXXX

DRAWINGS DATED – June 1, 2018

ARCHITECTURAL
MECHANICAL
ELECTRICAL
PLUMBING

END OF SECTION III
You are authorized to perform the following item(s) of work and to adjust the Allowance Sum accordingly:

This authorization is due to:

☑ Owners Request ☐ Field Condition Requirement ☐ Unforeseen Condition ☐ Design Error/Omission ☐ DCA Request

Explain:

THIS IS NOT A CHANGE ORDER AND DOES NOT INCREASE OR DECREASE THE CONTRACT AMOUNT

Original Allowance ...$
Allowance Expenditures prior to this Authorization ..$
Allowance Balance prior to this Authorization ...$
Allowance will be [increased] [decreased] by this Authorization$
New Allowance Balance ..$

APPROVAL RECOMMENDED

Rowan Project Manager Date VP Administration and Finance Date
(amounts >$30,099.99)

AVP Facilities Date
(amounts > $6,019.99)

☐ Attachments

Copies: ☐ Owner ☐ Contractor ☐ Consultants ☐ ☐ ☐ ☐ ☐ File

Revision 1 – October 2010
PLANNING AND CONSTRUCTION

ALLOWANCE CHARGE REQUEST (PROPOSAL)

Project: ___________________________ Allowance Charge Request Number: ________________

__ From (Contractor): _______________________

To: ___________________________ Date: _______________________

__ RU Project Number: _______________________

Re: ___________________________ PO Number: _______________________

This Allowance Charge Request contains charges to be made against the contract allowance

Description of Proposed Charge:

Attached supporting information from: □ Subcontractor □ Supplier □ □ □ □

Reason for Charge:

Attached pages: □ Proposal Worksheet Summary: □ Proposal Worksheet Details:

Signed by: ___________________________ Date: _______________________

Copies: □ Owner □ Contractor □ Consultants □ _________ □ _________ □ _________ □ File
REQUEST FOR INFORMATION

<table>
<thead>
<tr>
<th>RFI No:</th>
<th>Date Submitted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rowan Project No./Description:</td>
<td>Requested Response Date:</td>
</tr>
<tr>
<td></td>
<td>Actual Response Date:</td>
</tr>
<tr>
<td>Rowan Project Manager:</td>
<td></td>
</tr>
<tr>
<td>Submitted to:</td>
<td></td>
</tr>
<tr>
<td>Company:</td>
<td></td>
</tr>
</tbody>
</table>

Contract Document Reference:

<table>
<thead>
<tr>
<th>RFI DISCUSSION</th>
<th>Individually number each separate topic or question</th>
</tr>
</thead>
</table>

Submitted by (Name & Company): Title: Date:

<table>
<thead>
<tr>
<th>RFI RESPONSE</th>
</tr>
</thead>
</table>

Answered by (Name & Company): Title: Date:
The contractor must submit this proposal with all appropriate documentation and/or notify the Architect or Owner, in writing, of the date on which proposal submission is anticipated.

THIS IS NOT A CHANGE ORDER, A CONSTRUCTION DIRECTIVE OR A DIRECTION TO PROCEED WITH THE WORK DESCRIBED IN THE PROPOSED MODIFICATIONS.

DESCRIPTION: (Insert a written description of the Work)

ATTACHMENTS: (List attached documents that support description)

REQUESTED BY THE CONTRACTOR:

(Signature) (Printed Name and title)
The Contract is changed as follows:

The original (Contract Sum) (Guaranteed Maximum Price) was
New change by previously authorized Change Orders
The (Contract Sum) (Guaranteed Maximum Price) prior to this Change Order was
The (Contract Sum) (Guaranteed Maximum Price) will be (increased) (decreased)
(unchanged) by this Change Order in the amount of
The new (Contract Sum) (Guaranteed Maximum Price) including this Change Order will be

The Contract Time will be (increased) (decreased) (unchanged) by
The date of Substantial Completion as of the date of this Change Order therefore is

NOTE: This summary does not reflect changes in the Contract Sum, Contract Time or Guaranteed Maximum Price which have been authorized by Construction Change Directive.
ROWAN UNIVERSITY

HOURLY LABOR RATE BREAKDOWN FORM

All Contractors (Including sub-subcontractors) need to include a detailed breakdown of all wage rates, payroll burden costs and material costs for lump sum and time and material extras. Payroll burden items, FICA, FUI, SUI, and Workmen’s Compensation will be reimbursed on an average annualized basis. **This information must be provided for all trade to be utilized on the project by any and all contractors at the time of contractors bid submission.** The required format is as follows:

Contractor: __

Address:___

Telephone:___

Prepared by:__

Trade Classification:______________________________________

Local Union No:___________________

(If Applicable) Merit Shop_____ Union_______ (Check One)

Effective Date From__________________ To_________________

<table>
<thead>
<tr>
<th>Item</th>
<th>(%)</th>
<th>(S) Straight Time (a)</th>
<th>(1 ½ x) Overtime (b)</th>
<th>(S) Premium Cost (b-a)</th>
<th>(2x) Overtime (c)</th>
<th>(S) Premium Cost (c-a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1). Base Rate *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2). Overhead (on base rate only)</td>
<td></td>
<td>(d) XXXXXXX</td>
<td>(d) XXXXXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3). Profit (on base rate only)</td>
<td></td>
<td>(d) XXXXXXX</td>
<td>(d) XXXXXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4). F.I.C.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5). Federal Unemployment Tax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6). State Unemployment Tax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7). Welfare Fund</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8). Pension</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9). Vacation Fund</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10). Annuity Fund</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11). Associate Dues</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12). Paid Holiday</td>
<td></td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13). Workmen’s Compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14). Other (Define)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15). Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CHARGE PER HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All rates must be at the current minimum prevailing wage rate for the State of NJ.

Please refer to the state website for further information at http://lwd.dol.state.nj.us
<table>
<thead>
<tr>
<th>DATE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WEATHER CONDITIONS:</td>
<td></td>
</tr>
<tr>
<td>VISITORS:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTORS ON SITE:</th>
<th>SUPER ON SITE (Y/N):</th>
<th>WORKFORCE ON SITE: (Foreman, Tradesmen, Laborers, etc.)</th>
<th>NO. OF WORKERS</th>
<th>WORK BEING DONE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIALS DELIVERED:</th>
<th>EQUIPMENT ONSITE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBLEMS/STATUS/CAUSES FOR DELAY:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTEWORTHY PHONE CALLS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4/4/2016 8:55 AM
APPLICATION AND CERTIFICATE FOR PAYMENT

TO OWNER: PROJECT:
FROM CONTRACTOR: VIA ENGINEER:

APPLICATION NO: PERIOD TO:
PROJECT/CONTRACT NO:
APPLICATION DATE:

CONTRACTOR’S APPLICATION FOR PAYMENT

<table>
<thead>
<tr>
<th>Change Order Summary</th>
<th>ADDITIONS</th>
<th>DEDUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Orders approved in previous months by owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved This Month Number</td>
<td>Date Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATION is made for Payment, as shown below, in connection with the Contract. Continuation Sheet, AIA Document G703, is attached.
1. ORIGINAL CONTRACT SUM: ____________________________
2. Net change by Change Orders: ____________________________
3. CONTRACT SUM TO DATE (LINE 1 + 2): ____________________________
4. TOTAL COMPLETED & STORED TO DATE: ____________________________
 {Column G on G703}
5. Retainage:
 a. % of Completed Work: ____________________________
 {Column D + E on G703}
 b. % of Stored Materials: ____________________________
 {Column f on G703}
 Total Retainage (line 5a + 5b or Total in Column I of G703): ____________________________
6. TOTAL EARNED LESS RETAINAGE: ____________________________
 {Line 4 less Line 5 Total}
7. LESS PREVIOUS CERTIFICATES FOR PAYMENT (Line 6 from prior Certificate): ____________________________
8. CURRENT PAYMENT DUE: ____________________________
9. BALANCE TO FINISH, PLUS RETAINAGE: ____________________________
 {Line 3 less Line 6}

ARCHITECT'S CERTIFICATE FOR PAYMENT

In accordance with the Contract Documents, Based on on-site observations and the data comprising the above application, the Architect certifies to the Owner that to the best of the Architect's knowledge, information and belief the Work has progressed as indicated, the quality of the Work is in accordance with the Contract Documents, and the Contractor is entitled to payment of the AMOUNT CERTIFIED.

ARCHITECT:

AMOUNT CERTIFIED: ____________________________ $ ____________________________

(Attach explanation if amount certified differs from the amount applied for.)

ARCHITECT:

By: ____________________________ Date: ____________________________

This Certificate is not negotiable. THE AMOUNT CERTIFIED is payable only to the Contractor named herein. Issuance, payment and acceptance of payment are without prejudice to any rights of the Owner or Contractor under this Contract.
Attachment to G702 (or equivalent)
Certification for Payment

Project Name: __
Project Number: ___________________________ Payment Number: __

I, ________________________, a prime contractor working for Rowan University on the above-mentioned project, hereby certify as required by P.L. 191, c.507 of the State of New Jersey that: *(you must check one under “A” and one under “B”)*

A. With respect to previous progress payments:

() all my sub-contractors and suppliers have been paid all amounts due from all previous progress payments I have received from Rowan University for my work on this project

() all my sub-contractors and suppliers have been paid all amounts due from all previous progress payments with the exception of those listed below for which payment is being withheld as there exists a valid basis for those sub-contractors and suppliers listed below under the terms of their contract(s) to withhold payment from each such sub-contractor and supplier:

1. __

2. __

3. __

For each such sub-contractor and supplier for which payment is being withheld, I further certify that written notice detailing the specific reason(s) for withholding payment has been provided to each such sub-contractor and supplier with copies
thereof provided to my performance bond company and Rowan University.

B. With respect to this payment number:\

() all my sub-contractors and suppliers shall be paid all amounts due from this progress payment

() all my sub-contractors and suppliers shall be paid all amounts due from this progress payment with the exception of those listed below for which payment will be withheld as there exists a valid basis for those sub-contractors and suppliers listed below under the terms of their contract(s) to withhold payment from each such sub-contractor and supplier:

1.

2.

3.

For each sub-contractor and supplier for which payment is being withheld, I further certify that written notice detailing the specific reason(s) for withholding payment has been provided to each sub-contractor and supplier with copies thereof provided to my performance bond company and Rowan University.

I certify that the above statements are true. I am aware that if any of the above statements are willfully false, I am subject to punishment.

Dated:_____________
Signature
Please Print Name
CONTRACTOR’S PARTIAL OR FINAL RELEASE AND WAIVER OF LIENS

OWNER:

OWNER’S AGENT:

PROJECT:

CONTRACT FOR:

CONTRACT DATE:

Upon receipt by the undersigned Contractor of a check from Owner in the sum of $___________, which check will consume payment of all sums due the Contractor for labor, equipment and/or materials supplied in connection with the Project, and when said check has been paid by the bank upon which it is drawn, this document shall become effective to fully and finally waive and release any and all liens, claims, liabilities, actions, and demands that this Contractor and all its subcontractors have or might have against Owner, Lender, the Project, the real property upon which the Project is located and any and all other property owned by Owner on account of or in connection with labor, equipment and/or materials supplied by the undersigned to the Project.

The undersigned Contractor does hereby further acknowledge and represent that through the date hereof the undersigned has received payments totaling $___________ for labor, equipment and/or materials supplied to the Project.

This instrument has been executed as of the _______ day of ____________________, 20__.

CONTRACTOR:

By:

Name:

Title:

STATE OF ____________

COUNTY OF ________________

Sworn to and subscribed before me the undersigned authority on this _______ day of ____________________, 20__.

Notary Public, State of ________________

Printed Name of Notary Public
To Whom It May Concern:

Your recent request to Rowan University requesting information or a tax exempt form is hereby acknowledged.

It has been determined that Rowan University is a government body and is Exempt from New Jersey Sales and Use Taxes imposed by the Sales and Use Tax Act (P.L. 1966, c.30 and c.52). An opinion from the State of New Jersey, Office of the Attorney General has been reproduced below.

If you have any questions, please contact the Accounts Payable Office at (856) 256-4115.

Sincerely,

Joseph F. Scully, Jr.
Vice President for Finance & CFO
CONSENT OF
SURETY COMPANY
TO FINAL PAYMENT
AIA DOCUMENT G707

PROJECT:
(name, address)

TO (Owner)

ARCHITECT'S PROJECT NO:

CONTRACT FOR:

CONTRACTOR:

In accordance with the provisions of the Contract between the Owner and the Contractor as indicated above, the
Surety Company,
on bond of the Contractor,
hereby approves of the final payment to the Contractor, and agrees that final payment to the Contractor shall not
relieve the Surety Company of any of its obligations to the Owner,
as set forth in the said Surety Company's bond.

IN WITNESS WHEREOF, the Surety Company has hereunto set its hand this day of 2017

Surety Company

Attest:
(Signature of Authorized Representative)

Title

NOTE: This form is to be used as a companion document to AIA DOCUMENT G706, CONTRACTOR'S AFFIDAVIT OF PAYMENT OF DEBTS AND CLAIMS, Current Edition
SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes the following:

1. Work covered by the Contract Documents
2. Use of premises.

B. Related Sections include the following:

1. Division 1 Section “Construction Facilities and Temporary Controls” for limitations and procedures governing temporary use of Owner’s premises.

1.3 WORK COVERED BY CONTRACT DOCUMENTS

A. Project Identification:

1. Project Location: Rowan University, Glassboro, New Jersey
 a. 107 Gilbreth Pkwy, Mullica Hill, NJ 08062
2. Owner: Rowan University

B. Architect Identification: The Contract Documents were prepared for Project by: SOSH Architects

C. The Work consists of the following:

1. The demolition of construction between four rooms and a hallway (Rooms 123, 124, 126, 127 & 139) in order to combine them into one lab space.
2. Removal of ACT ceilings and fixtures.
3. Removal of remaining furniture.
4. Limited wall construction in the lab areas and in the second floor storage room, 237.
5. Remove vinyl floor finishes and replacement with epoxy floor covering, similar to existing in room 124.
6. Removal of the overhead door in room 125 and replacement with an aluminum storefront system with double doors.
7. Penetrations for mechanical ductwork at second floor and roof, includes modification to the existing roof for proposed mechanical equipment.
8. Supply and exhaust equipment, ductwork, etc.
9. Replacement of all lighting.
10. New power as required to support the mechanical system and lab equipment and other miscellaneous electrical work.
11. Limited plumbing changes.
12. Install all owner provided furniture and equipment.

1.4 CONTRACT

A. Project will be constructed under a single prime general construction contract.

1.5 USE OF PREMISES

A. General Construction Operations: Contractor shall have limited use of premises for construction operations, including a limited use of the project site (outside the facilities exterior walls) during the period of construction activity. Contractor’s use of the premises is limited by Rowans right to perform work or to retain other contractor’s on portions of the Project or to limit access for events or other functions as the University might require. The Contractor will be given notice of any such events well in advance so that arrangements can be made to insure the prosecution of the work continues as scheduled.

B. Arrange use of site and premises to allow:

1. Owner occupancy.
2. Work by others.
3. Work by Owner.

C. Use of Site: Limit use of premises to work in areas indicated. Do not disturb portions of Project site beyond the building perimeter unless prior approval of the University is received prior to conduction such work or operations.

1. Limit site disturbance, as approved by Rowan University.
2. REFER TO SECTION 011400 FOR WORK HOURS.
3. Storage of construction materials and equipment is not permitted inside the existing building.
4. Driveways and Entrances: Keep driveways and entrances serving premises clear and available to Rowan University, Rowans employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 a. Schedule deliveries to minimize use of the driveways and entrances.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
 c. Contractor may use up to two (2) existing parking spaces at the James Hall Loading Area.
 d. Contractor may NOT have a trash dumpster nor a storage shed on the Owner’s property.

D. Use of Existing Building: Maintain existing building in a weather tight condition throughout construction period. Repair damage caused by construction operations. Protect building and its occupants during construction period.

E. The Contractor will be responsible for photographing the entire area of work, adjacent spaces where incidental work may occur, corridors and elevators accessing the area of
work, the loading area, and contractor parking area. The Contractor will provide the Owner with digital copies of all the photographs prior to mobilization as a record of the existing conditions PRIOR to the start of the work. Digital format will be in PDF format.

1.6 SPECIFICATION FORMATS AND CONVENTIONS

A. Specification Format: The Specifications are organized into Divisions and Sections using the 16-division format and CSI/CSC’s “MasterFormat” numbering system.

1. Section Identification: The Specifications use section numbers and titles to help cross-referencing in the Contract Documents. Sections in the Project Manual are in numeric sequence; however, the sequence is incomplete. Consult the table of contents at the beginning of the Project Manual to determine numbers and names of sections in the Contract Documents.

1.7 MISCELLANEOUS PROVISIONS

A. WORK REQUIRED TO BE PERFORMED UNDER THIS CONTRACT SHALL BE COMPLETED IN ACCORDANCE WITH THE FOLLOWING MILESTONES AND COMPLETION DATES. CONTRACTORS MUST INCLUDE IN THEIR BIDS ALL COSTS INCLUDING OVERTIME ASSOCIATED WITH INSURING THAT THE PROJECT IS COMPLETED BY THE MILESTONE DEADLINES LISTED HEREIN.

B. Summary of Milestones:

1. Notice to Proceed/Authorization by: The University intends to issue Notice to Proceed, Construction Contract, and/or University purchase order as evidence of contract award on or before 07-15-2018.
2. ALL submittals to Architect: one (1) week after Notice to Proceed.
3. Architect return of reviewed of submittals by: one (1) week after receipt.
5. Final Completion of work on site by FIVE (5) BUSINESS DAYS FROM SUBSTANTIAL COMPLETION. All construction including punch list work will be completed by this date.
6. Final Completion by TEN (10) BUSINESS DAYS FROM SUBSTANTIAL COMPLETION DATE. All closeout documentation, final payment application, etc.

C. Weather Conditions:

1. Unfavorable weather conditions shall not be justification for delays in completion or final completion dates as specified. No change orders will be issued or approved for extensions of time due to weather conditions. Seasonal weather conditions shall be considered in the planning and scheduling of all work influenced by high or low ambient temperatures for the completion of all contract work within the allotted contract time. In addition, appropriate allowances shall be made for anticipated time losses due to normal rain and snow conditions by statistically expanding the estimated time durations for weather sensitive activities with the constraint that the substantial completion deadline cannot change.

2. The University may at its sole discretion entertain extensions of time from the contractor for weather related delays. However no extensions of time shall be considered by the University until at least twenty-five (25) lost project schedule days have accrued. Lost time will accrue on a proportionate basis – ¼ lost day will be charged as ¼ lost day, 1/2 lost day
will be charged as ½ lost day, and so forth. A lost project schedule day is considered a day or any portion of a day when all members of the construction workforce on the project cannot work due to inclement weather conditions. Whether or not the contractors’ workforce fails to begin work or leaves the project site on any given day due to a claim of inclement weather a lost project schedule day will not be recognized by the University until it is approved in writing by the University's project manager.

3. Should the University approve an extension of time the contractor may only submit reimbursement for the cost of the extension of rental equipment agreements; bond premium and insurance adjustments at actual cost with no mark up; and general conditions directly impacted by the approved extension. Appropriate back up documentation as requested by the University project manager must accompany any submission for reimbursement. Appropriate back up can be anything from copies of contractor's rental agreements showing rental durations, unit costs, rental rates, etc. to copies of superintendents pay stubs.

D. Intent of Contract: The drawings and specifications of the contract are intended to require the contractor to provide for everything reasonably necessary to accomplish the proper and complete finishing of the work. All work and materials included in the specifications and not shown on the drawings, or shown on the drawings and not in the specifications, shall be performed and/or furnished by the contractor as if described in both. Any incidental materials and/or work not specified in the drawings and/or the specifications which are, nevertheless, necessary for the true development thereof and reasonably inferable therefrom, the contractor shall understand the same to be implied and required, and shall perform all such work and furnish all such materials as if particularly delineated or described therein. Should there be an obvious error between the drawings and specifications, the most stringent constraints of the conflicting information shall be assumed by the contractor and it shall be the contractor’s responsibility to complete the work as reasonably required, consistent with the intent of such drawings and specifications as may be interpreted by the University.

E. The University may choose to pre-purchase some or all of the mechanical equipment due to lead time constraints. Upon issuance of the Notice to Proceed, the contract for this equipment will be assigned to the General Contractor. The General Contractor shall provide for installation and all work associated with the proposed equipment in their bid as well as all documentation and warranties.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000
SECTION 011400 – WORK RESTRICTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any
conflicts between the requirements of these Sections, the more stringent requirement shall
apply.

1.2 USE OF PREMISES

A. Use of Site: Limit use of premises to work in areas indicated. Do not disturb portions of site
beyond areas in which the Work is indicated.

1. Limits: Confine construction operations to weekdays (Monday through Friday) from 8:00
AM to 5:00 PM. Weekend and Holiday work may be permitted if approved by the Owner.
2. Owner Occupancy: Allow for Owner occupancy of building, site and use by the public.
3. Driveways and Entrances: Keep streets, driveways and entrances serving premises
clear and available to owner, Owner's employees, and emergency vehicles at all times.
 a. Schedule deliveries to minimize use of driveways and entrances.
 b. Schedule deliveries to minimize space and time requirements for storage of
 materials and equipment on-site.

B. Use of Existing Building: Repair damage caused by construction operations. Protect building
 and its occupants during construction period.

1.3 OCCUPANCY REQUIREMENTS

A. Full Owner Occupancy: Owner will occupy site and existing building during entire construction
 period. Cooperate with owner during construction operations to minimize conflicts and facilitate
 Owner usage. Perform the Work so as not to interfere with Owner’s operations.

1.4 WORK SEQUENCE

A. Work shall be completed within the schedule as outlined in Section 011000 – Summary.
 University intends to issue Notice to Proceed, Construction Contract, and/or University
 Purchase Order as evidence of contract award on or before Project start date listed.

1.5 CONTRACTOR WORK AREAS, WORKING CONDITIONS AND EQUIPMENT STORAGE
 REGULATIONS

A. The Contractor shall not unreasonably encumber the facilities with its equipment or work to be
 performed. Work conducted by the Contractor, Subcontractor, or any other person and/or firm
affiliated with the Contractor shall be contained within pre-designated working areas established by the documents.

B. The Contractor shall, at all times during the progress of the work, keep the site free from the accumulation of all rubbish and debris caused by its performance. The Contractor shall remove all debris and rubbish related to its work at the end of each workday to the satisfaction of the Project Manager. Tool storage boxes shall not be permitted inside the building on the first floor or outside the building.

C. The Contractor shall adequately secure and protect its equipment, materials and vehicles. The University assumes no liability for any damage to, or theft of, the Contractor’s property. The Contractor shall have the use of a designated area for storage and staging of construction materials and equipment. The Contractor shall be responsible for adhering to security procedures outlined by the Project Manager.

D. The Contractor is responsible for all safety precautions for all of its employees and property while performing its services.

E. The Contractor shall strictly limit its employees’ use of the facilities for lunch, smoking or rest time usage to only those areas designated by the Project Manager. Use of facility telephones will not be allowed. Use of building toilet facilities shall not be permitted. Smoking is not allowed inside the building.

1.6 WORK STOPPAGES, EXISTING UTILITY INTERRUPTIONS, NOISE AND ODOR RESTRICTIONS, AND MATERIAL APPROVALS

A. Work Stoppages – DOES NOT APPLY.

B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Owner not less than three (3) days in advance of proposed utility interruptions.
2. Do not proceed with utility interruptions without Project Manager’s written permission.

C. Consideration shall be given by the Contractor regarding odors emanating from adhesives and sealants, etc and excessive noise. If the odors or noise are such that they may disturb the employees and guests then such work shall be performed while the building is not occupied. This determination shall be at the sole discretion of the Project Manager. The playing of radios and other unnecessary noise will not be permitted at any time.

D. All material safety data sheets shall be submitted and approved by the Project Manager prior to use of the material.

1.7 PROTECTION OF INTERIOR FINISHES

A. The Contractor shall take extra care to avoid damage or soiling to any part of the facility. The Contractor is responsible for all damages or destruction caused directly or indirectly by its performance to any part of the building or adjoining property. Any damage or destruction caused by the Contractor or its employees will be repaired or replaced as the Project Manager directs and to their satisfaction with all costs charged to the Contractor. The costs may be deducted from any and all amounts due to the Contractor.
B. Any of the Contractor’s employees found defacing, damaging or marring the building or its finishes or contents shall be immediately removed by the Contractor. The Contractor shall be charged for all remedial work to restore the damaged area or contents to their original condition to the satisfaction of the State.

C. The Contractor shall take all necessary steps to ensure adequate protection of all building furniture, equipment and building finishes, including but not limited to: floors, walls, ceilings, windows, draperies, blinds, carpeting, doors, doorways and contents. In this endeavor, all workers are to take precautions to protect rugs and floors. The Contractor shall be charged for all remedial work to clean, repair and/or replace items damaged by the Contractor to the satisfaction of the State.

D. The Contractor is responsible for the cost of cleanup of dust, dirt and stains caused by the work to the satisfaction of the Project Manager. The Contractor shall take all necessary precautions to keep dust, dirt and debris to a minimum both within the construction area and throughout the buildings.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011400
SECTION 012200 – UNIT PRICES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for unit prices.

B. Related Requirements:

1. Section 012500 “Contract Modification Procedures” for procedures for submitting and handling Change Orders.
2. Section 014000 “Quality Control Requirements” for general testing and inspection requirements.

1.3 DEFINITIONS

A. Unit price is a price per unit of measurement for materials, equipment, or services, or a portion of the Work, added to or deducted from the Contract Sum by appropriate modification, if the scope of Work or estimated quantities of Work required by the Contract Documents are increased or decreased.

1.4 PROCEDURES

A. Unit prices include all necessary material, plus cost for delivery, installation, insurance, applicable taxes, overhead, and profit.

B. Measurement and Payment: See individual Specification Sections for work that requires establishment of unit prices. Methods of measurement and payment for unit prices are specified in those Sections.

C. Owner reserves the right to reject Contractor’s measurement of work-in-place that involves use of established unit prices and to have this work measured, at Owner’s expense, by an independent surveyor acceptable to Contractor.

D. List of Unit Prices: A schedule of unit prices is included in Part 3. Specification Sections referenced in the schedule contain requirements for materials described under each unit price.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION

3.1 SCHEDULE OF UNIT PRICES

A. NONE ARE REQUIRED FOR THIS PROJECT.
SECTION 012300 - ALTERNATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS

A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the Bidding Requirements that may be added to or deducted from the Base Bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.4 PROCEDURES

A. Coordination: Modify or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated modifications to alternates.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Schedule: A Schedule of Alternates is included at the end of this Section. If specification Sections are referenced in alternate schedule, the specification section contains the requirements for materials necessary to achieve the work described under each alternate. If specifications are not listed in the schedule below, base the alternate price on the description below.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ADD – ALTERNATES

A. NONE

3.2 SCHEDULE OF DEDUCT – ALTERNATES

A. Add Alternate No. 1: In the CREATEs Lab, omit the removal and replacement of the eight (8) ceiling mounted retracting cord reels. Keep the existing.

B. Add Alternate No. 2: In the CREATEs Lab, omit the addition of the five (5) compressed air hook ups in rooms 123, 125 & 127.

C. Add Alternate No. 3: In the CREATEs Lab, omit any modifications to door 001.

D. Add Alternate No. 4: In the CREATEs Lab, omit the relocation of the emergency shower and associated drain in room 125. Configure shower head to remain in the existing location. Modify plumbing supply line as necessary and provide plumbing hangers to properly support the shower head.

END OF SECTION 012300
SECTION 012400 – PROCEDURES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, General Conduct of the Work and Special Requirements, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 DESCRIPTION OF WORK

A. The types of minimum requirements for procedures and performance or control work of a general nature, to be fulfilled collectively by contractors, include but are not necessarily limited to the following categories:

 1. Coordination and meetings.
 2. Administration-supervisory personnel.
 3. Examination and checking of contract drawings.
 4. Surveys and records or reports.
 5. Limitations for use of site.
 6. Protection of Persons and Property.
 7. Special reports.
 8. Subcontractor, material approval.
 10. Inspections, tests and reports.
 11. Progress photographs.
 13. Control Wiring.
 15. Sleeves, built-in items.
 16. Cutting and patching.
 17. Uncovering and correction of work.
 18. Cleaning and protection.

1.3 COORDINATION AND MEETINGS

A. General: Contractor shall prepare a written memorandum of general instructions on required coordination activities including notices/reports/meetings and distribute memorandum to each engaged entity performing work at project site, with copies to Architect and Owner.

B. Coordination Drawings: Where work by separate entities requires off-site fabrication of products and materials which must be accurately interfaced and closely intermeshed to produce required results, prepare coordination drawings to indicate how work shown by separate shop drawings will be interfaced, intermeshed, and sequenced for installation.

 1. Comply with submittal requirements of "Submittals" section, and other requirements outlined in the other Divisions.

C. Biweekly Job Meeting: The Contractor’s Project Manager and Superintendent, the Owner's Project Manager and the Architect shall attend biweekly job meetings convened by the Owner.
for the purpose of affording the opportunity to review Contractor's coordination efforts, to expedite the performance of administrative tasks, and to generally assess the work progress. Contractor shall require representation (at each meeting) by every entity currently involved in coordination or planning for the work (of the entire project). Contractor shall participate in meetings in a manner, which will resolve coordination problems.

1. Time and location of job meetings shall be designated by the mutual agreement of the Contractor, Architect and Owner.
2. Job meetings shall be chaired by the Architect, who shall record the proceedings in the form of minutes and shall be responsible for proper distribution thereof to all parties. Initial minutes will be distributed within three (3) business days after the meeting.
3. Any and all corrections or clarifications to these minutes shall be received by the Architect in writing within three (3) days of their issuance. After the interval allowed for corrections and clarifications, Job Meeting Minutes will stand as part of the project record.
4. All decisions, instructions and interpretations given by Owner, with concurrence of the Architect, at these meetings shall be binding and conclusive on Contractor.
5. Architect and Owner shall have the right to schedule Special Job Meetings or increase the frequency of job meetings if, in his opinion, the progress and condition of the work warrant it. Attendance at such meetings is mandatory.
6. Subcontractors and suppliers shall attend at the request of the Architect or Owner as appropriate to the agenda topics at each meeting.
7. Agenda:
 b. Field observations, problems, and decisions.
 c. Identification of problems, which impede planned progress.
 d. Maintenance of Progress Schedule- updated by Contractor and discussed at every meeting.
 e. Corrective measures to regain projected schedule milestones and deadlines.
 f. Planned progress during succeeding work period and two (2) week look ahead.
 g. Effect of proposed changes on progress schedule and coordination.
 h. Review and update Submittal Log for every meeting.
 i. Other business relating to the Work.

D. Pre-Construction Meeting: Owner will schedule a meeting after Notice of Award.

1. Attendance Required:
 a. Owner.
 b. Architect.
 c. Contractor.

2. Agenda:
 a. Execution of Owner/Contractor Agreement.
 b. Submission of executed bonds and insurance certificates.
 c. Distribution of Contract Documents.
 d. Submission of list of Subcontractors, list of Products, schedule of values, etc.
 e. Procedures and processing of field decisions, submittals, substitutions, applications for payment, proposal requests, Change Orders, and Contract closeout procedures.
 f. Scheduling (Preliminary Progress Schedule by Contractor).
The above Agenda is a comprehensive list of items that could be discussed at the Pre-Construction Meeting. Some items will be included while the Owner may choose to handle other items by other means.

3. Architect will record minutes and distribute copies within two (2) days after meeting to participants, with two copies to Contractor, Owner, and those affected by any decisions made.

E. Pre-Installation Conferences:

1. When required by individual specification sections, contractor shall convene a pre-installation conference prior to the start of installation for the portion of work in question.
2. Require attendance of all Subcontractors, suppliers, manufacturers (if necessary), Owner Architect (at the Owners request), Engineers (at the Owners request) directly affecting or affected by the Work in question.

F. Application for Payment “PENCIL COPY” review meeting:

1. Contractor to schedule a Pencil Copy Review Meeting five (5) working days prior to payment period deadline stipulated in the Agreement.
2. Contractor will be responsible to incorporate all agreed upon changes to the Pencil Copy version of the Application and submit the revised Application in accordance with all Contract requirements.

1.4 ADMINISTRATIVE/SUPERVISORY PERSONNEL

A. General: In addition to a Home Office Project Manager and a Field Construction Superintendent and other administrative and supervisory personnel required for performance of the work, the Contractor shall provide specific coordinating personnel as may be required for proper interface between the trades and other work of the total project.

B. Project Superintendent: The Contractor shall provide a full-time Project Superintendent, who is experienced in administration and supervision of building construction of a type similar in nature and scope to this Project, including mechanical and electrical work, and who is hereby authorized to act as the general coordinator of interfaces between the work of all the trades. For purpose of this provision, “interface” is defined to include the scheduling and sequencing of work, sharing of access to work spaces, installations, each trade’s protection of work by other trades, cutting and patching, tolerances, preparation of coordination drawings, inspections, tests, and temporary facilities and services.

C. Submittal of Staff Names, Duties: Within 15 days of contract date, the Contractor shall submit to the Owner and Architect a listing of Contractor’s principal staff assignments and consultants, naming persons and listing their addresses, telephone numbers and past construction experience.

1.5 EXAMINATION AND CHECKING OF CONTRACT DOCUMENTS

A. Contractor shall be responsible for reviewing the contract documents in accordance with the requirements specified herein.

1. Contractor shall examine and check all quantities and dimensions given on contract drawings and shall be responsible for noting any errors which can be discovered by such
examination and check and shall be responsible for satisfactory joining and fitting of all parts of the work; any check or observation by Architect/Engineer shall not relieve the Contractor of any responsibility as to correctness of the work.

2. Field verification of dimensions on drawings is specifically directed and required of the Contractor as a matter of course, because locations, distances and elevations will be governed by actual field conditions. Contractor shall review plans, site plans and details of construction on the drawings, and adjust his work to conform to all conditions indicated thereon or reasonably inferable therefrom.

3. Discrepancies shown on different plans and details, or between drawings, and actual field conditions, or between drawings and specifications, shall promptly be brought to the attention of the Architect for interpretation and resolution.

4. If, in Contractor's opinion, any work is indicated on drawings or specified in such a manner as will make it impossible to produce such in conformance with the contract, he shall refer same to Architect for interpretation. If additional and supplementary instructions are necessary, Architect/Engineer will prepare and issue same in an appropriate form to the Contractor, with a copy being forwarded to the Owner.

5. Contractor is directed never to scale dimensions or locations from contract drawings. Consult Architect/Engineer for dimensions and locations of all items.

1.6 SURVEYS AND RECORDS/REPORTS

A. General: Working from lines and levels established by property survey, and as shown in relation to the work, the Contractor shall establish and maintain bench marks and other dependable markers to set lines and levels for the work at each story of construction and elsewhere on site as needed to properly locate each element of entire project. Contractor shall calculate and measure required dimensions as shown (within recognized tolerances if not otherwise indicated); and shall not scale drawings to determine dimensions. Advise tradesmen performing the work, of marked lines and levels provided for their use in layout of work.

1.7 LIMITATIONS FOR USE OF SITE

A. General: It is the intent of the Owner to preserve the present character of the campus to the greatest extent possible, both during and after the period of construction. To this end the Contractor will be subject to certain operational controls in the movement of personnel and equipment on and off the construction site. The Contractor's cooperation with the general goal of protecting and preserving the Institute campus, and with the specific controls specified hereinafter, shall be mandatory. The following general controls shall be observed:

1. Construction activities, including location of temporary support facilities, stockpiling of materials, loading and unloading, parking for construction personnel and other related activities shall be restricted to areas as specified by the Owner.

2. The accumulation or stockpiling of debris, rubbish or other material resulting from demolition or construction operations will not be permitted. Removal and off-site disposal must proceed concurrent with demolition and construction activities, to the end that the site shall at all times present a neat, orderly and workmanship appearance. No liquid or solid material of any kind is to be disposed of on campus property. No burning of trash or debris will be permitted on the site.

3. The Contractor shall be responsible for the prevention, abatement and control of any environmental pollution arising from demolition or construction activities in the performance of the work, in full compliance with all applicable Federal and State laws and regulations.

a. Existing trees and other vegetation on and adjacent to the project site shall be
protected. Refer to Section 015000 - "Temporary Facilities" - for specific requirements concerning fencing. Under no circumstances shall materials be stored or heavy equipment operated beneath the drip lines of existing trees.

4. Contractor shall be responsible for the control of dust arising from demolition or construction operations within the project site or along the Access Routes.

B. Allocation of Space: In addition to site utilization limitations and requirements shown on drawings, and indicated by other contract documents, Contractor shall administer allocation of available space equitably among separate subcontractors and other entities needing access and space, so as to produce overall efficiency in performance of total work of project.

C. Deliveries: Contractor shall schedule deliveries so as to minimize space and time requirements for storage of materials and equipment on site.

D. Construction Access:

1. Contractor shall plan, coordinate and execute all construction activities in such manner as to avoid traffic disruption over local streets.
 a. Prior to the start of work, Contractor shall contact the Police Department and determine approved travel routes for delivery vehicles on local streets.
 b. Contractor shall obtain and pay for all necessary permits in connection with the operation of overweight and over length vehicles on City streets.

2. Contractor shall be responsible for controlling all traffic entering and leaving the Owner's property including provision of flagmen as necessary. Contractor shall be responsible to require mud removal from rubber-tired vehicles departing the immediate project site. Operation of tracked vehicles shall be restricted to the project site as defined by the contract limit lines, and is not permitted on paved areas.

3. Whenever and wherever the project work must be performed outside the contract limit lines, and after the necessary permits have been secured from local authorities, Contractor shall erect and maintain barricades, danger signals and warning signs at working sites, closed roads, intersections and other places of danger to traffic, the work, or the public. Barricades and obstructions of any kind shall be marked with lights or flares at not more than five (5) foot intervals visible for a distance of not less than 500 feet. Contractor shall provide sufficient watchmen and traffic directors and shall take all necessary precautions for the proper protection of the work and the safety of the public.

4. Contractor shall be responsible for identification, control and maintenance of construction traffic within the contract limit lines. Identification and control shall include the provision of temporary traffic signs and the installation of barricades and warning lights to protect the work and to identify excavations or other hazards, all as may be required. Maintenance shall include the provision and placing of ballast materials as may be required, grading and compaction, removal of debris, removal of snow, and general care to insure a serviceable roadbed at all times.
 a. The Owner shall be responsible for snow removal from paved roadways and parking lots in the vicinity of the project area, but not within the work areas or areas immediate to the Contractor's temporary facilities.

5. Prior to final completion, perform all cleaning and repairs as necessary to restore all existing areas within the limits of any and all work required as a part of the scope of these contract documents, to their original condition.
E. Temporary Parking for Construction Personnel: The Owner shall designate available areas for parking.

1. Offsite parking will be available for employee parking, in an area to be designated by the Owner on RUI property. Construction personnel will not be permitted to park in campus parking lots, except as specifically designated and authorized by the Owner. The designated parking area may change due to seasonal demands of the Owner.

F. Staging and Storage Area: The Contractor shall have the authority and responsibility to plan and locate storage areas, equipment marshaling areas, and temporary field facilities. Staging and storage areas shall be so located and utilized as to afford unrestricted access to all of the work at all times. Such areas shall not encroach upon access routes to the work, nor shall they be so located or utilized as to impede free access of emergency vehicles. Such areas must be approved by the Owner prior to use by the contractor.

1. Staging and storage areas shall be located wholly within the contract limit lines and site enclosure fence.
2. All loading and unloading operations shall occur inside the contract limit lines and behind the site enclosure fence.
3. Storage of materials and equipment outside the site enclosure fence or on City streets is absolutely prohibited.
4. Prior to final completion, perform all cleanup, disposal, grading, topsoiling, seeding and other work as necessary to restore the entire staging/storage area to its original condition.

G. Verification of Underground Utilities: Contractor shall have the responsibility to verify the actual locations of existing underground utility lines. Should verified underground utility locations conflict with excavation required in connection with the work, Contractor shall notify the Owner's project manager immediately. Hand excavation shall be required at locations in close proximity to verified existing utilities.

1. The Owner does not guarantee the accuracy and completeness of information shown on any contract drawings for underground utilities; Contractor must be responsible for ascertaining all facts concerning utility locations.
2. Damage to existing underground utilities, caused as a result of Contractor's negligence or failure to comply with the requirements listed herein, shall be repaired and/or replaced at Contractor's expense, to the complete satisfaction of the Owner and utility company by close of business of the day of damage.

H. Cleaning and Trash Disposal: Comply with requirements specified in Section 01500, "Temporary Facilities".

1.8 PROTECTION OF PERSONS AND PROPERTY

A. Safety Precautions and Programs: Contractor shall be responsible for initiating, maintaining and supervising all safety precautions and programs in connection with the work. He shall designate a responsible member of his organization at the site whose duty shall be the prevention of accidents. This person shall be the Contractor's superintendent, unless otherwise designated by the Contractor, in writing, to the Owner.

B. Protection of Persons: Contractor shall take all necessary precautions for the safety of employees on the work, and shall comply with all applicable provisions of Federal and State safety laws, union safety regulations, and building codes to prevent accidents or injury to
persons on, about or adjacent to the premises where the work is being performed. Particular attention is called to the requirements of the Federal Occupational Safety and Health Act (OSHA). In connection with the work of its own forces, Contractor shall direct and properly maintain, at all times, as required by the conditions and progress of the work, all necessary safeguards for the protection of workers and the public and shall post danger signs warning against the hazards created by such features of construction as protruding nails, hoists, well holes, elevator hatchways, scaffolding, window openings, stairways and falling materials.

1. Security/protection provisions are specified in "Temporary Facilities" section.

C. Protection of Work and Property: Contractor shall take all precautions for the safety of, and shall provide all reasonable protection to prevent damage, injury or loss to:

1. All the work and all materials and equipment to be incorporated therein, whether in storage on or off the site, under the care, custody or control of the Contractor or any of his Subcontractors, or Sub-subcontractors; and

2. Other property at the site or adjacent thereto, including trees, shrubs, lawns, walks, pavements, roadways, structures and utilities not designated for removal, relocation or replacement in the course of construction.

 a. Refer to "Temporary Facilities" section for specific requirements concerning fencing around existing trees.

D. Emergencies: In any emergency affecting the safety of persons or property, Contractor shall act with diligence, at his discretion, to prevent threatening injury, damage or loss. In such case, he shall immediately notify the Owner, of the action taken and shall forthwith prepare and submit a detailed and documented report to the Owner and the Architect.

E. Insurance and Indemnification: Comply with requirements of the Contract Agreement.

1.9 SPECIAL REPORTS

A. General: Except as otherwise indicated, submit special reports directly to Owner within one day of occurrence requiring special report, with copy to Architect/Engineer and others affected by occurrence.

B. Reporting Unusual Events: When an event of unusual and significant nature occurs at site, the Contractor shall prepare and submit a special report listing chain of events, persons participating, response by Contractor's personnel, evaluations of results or effects, and similar pertinent information. When such events are known or predictable in advance, it is the responsibility of the Contractor to advise the Owner in advance at earliest possible date.

C. Reporting Accidents: Contractor shall prepare and submit reports of significant accidents, at site and anywhere else work is in progress. Record and document data and actions; comply with industry standards. For this purpose, a significant accident is defined to include events where bodily injury is sustained, or property loss of substance is sustained, or where the event posed a significant threat of loss or personal injury.

1.10 SUBCONTRACTOR, MATERIAL APPROVAL

A. Material Approval: Contractor shall submit to the Owner and Architect, for approval, a list of all vendors and manufacturers for the supply of materials and equipment, whether specified or not, starting within fifteen (15) calendar days after award of contract; said list shall be complete
within forty-five (45) days thereafter. In instances where specified materials and equipment are subject to the Owner's and Architect's approval by way of the submittal process, no contract shall be entered into with any vendor, supplier or manufacturer before the Owner and Architect have approved his name in writing.

B. Subcontractor Approval: Contractor shall, beginning within fifteen (15) calendar days after award of contract and ending within forty-five (45) days thereafter, notify the Architect and Owner in writing of the names of all subcontractors proposed for the work, and shall not employ any without prior written approval of the Owner, or any that Owner may within a reasonable time reject.

1.11 TRADESMEN AND WORKMANSHIP STANDARDS

A. General: Contractor shall instigate and maintain procedures to ensure that tradesmen performing work at site are skilled and knowledgeable in methods and craftsmanship needed to produce required quality-levels for workmanship in completed work. Remove and replace work, which does not comply with workmanship standards as specified and as recognized in the construction industry for applications indicated. Remove and replace other work damaged or deteriorated by faulty workmanship or its replacement.

B. Availability of Tradesmen: At each progress or job meeting, Contractor shall review availability of tradesmen and projected needs to accomplish work as scheduled. Require each entity employing tradesmen to report on current and pending trade actions and jurisdictional matters, which might affect progress of work. Where possible dispute or delay is identified, consider alternatives and take actions to avoid disputes and delays.

C. Labor Peace Clause:

1. The Contractor agrees that in the performance of the work called for under these Contract Documents, it will employ only such labor as will not delay or interfere with the speedy and diligent progress of the project and as will be acceptable to and work in harmony with all other workmen employed by the Owner.

2. In the event of labor difficulties (including, but not limited to, strikes, walkouts, picketing, boycotts, shutdowns, or inability to obtain a sufficient number of competent laborers or mechanics), which interfere with the work, or any part thereof, it shall be the responsibility of the contractor to take all measures necessary and possible to insure the projects progress and completion as prescribed by the time schedule including, but not limited to, seeking injunctive relief in an appropriate Court of Common Pleas, filing an unfair labor practices charge(s) with the National Labor Relations Board, discharging employees who engage in an unprotected strike or work stoppage, or any other applicable legal or equitable action related to the aforesaid labor difficulty which occurs in connection with the performance of this contract.

3. In the event of a strike or stoppage of work resulting from a dispute involving or affecting the labor employed by the contractor (including subcontractors and suppliers), the Owner may, at its option, terminate this contract. However, where practicable the contractor will give subcontractors 24 hours to resolve the strike or stoppage of work before terminating its contract. In the event there is a conflict between this clause and any other agreement between contractor and the Owner, including but not limited to other provisions of this contract, other written agreements and verbal agreements, this clause will take precedent. In the event of such termination, the Owner shall have the right to take possession, for the purpose of completing such work, of all materials, tools, and appliances on its premises and employ any person or persons to finish the work and provide the materials and labor for such work. The Contractor shall not be entitled to
receive any further payments under this agreement until the work shall be finished completely, at which time the contractor shall be paid whatever balance is found to be due to contractor for amounts expended by it either for labor, materials, or otherwise, plus contractors' percentage of profit as provided in this agreement, less, however such expenses or damages as the Owner may suffer by so completing the work. The Contractor shall not be entitled to prospective profits on portions of the project not performed by it or with respect to the materials not furnished by it. Further, it is understood and agreed that should the expenses to the Owner in completing the contract be increased by reason of such discontinuance of the services of this contractor, then this contractor shall be responsible to the Owner for such entire increase in addition to the other expenses or damages referred to above.

1.12 INSPECTIONS, TESTS AND REPORTS

A. General: Required inspection and testing services are intended to assist in determination of probable compliances of the work with requirements, but do not relieve Contractor of responsibility for those compliances, or for general fulfillment of requirements of contract documents. Specified inspections and tests are not intended to limit Contractor's quality control program. Afford reasonable access to agencies performing tests and inspections.

B. Inspection and Testing by Independent Agencies: General requirements are specified in "Quality Control Services" section of these specifications (Section 01400). Particular requirements are specified in the technical sections (Divisions 2 through 16).

C. Inspection and Testing by Authorities with Jurisdiction: If the Contract Documents, laws, ordinances, rules, regulations or order of any public authority having jurisdiction require any portion of the Work to be inspected, tested or approved, the Contractor shall give the Owner not less than five (5) working days notice in writing of its readiness for inspections or testing. The Contractor shall bear all costs of such inspections, tests or approvals conducted by public authorities.

D. Inspection and Testing by Contractors: When inspections and tests are required by the technical sections of these specifications to be performed by Contractors on installed materials and equipment, all such inspections and tests shall be conducted in the presence of, and upon timely notice to, the Owner, and the results thereof approved prior to acceptance of the installation. Fuel, power and any other items or services required for the proper inspecting and testing of equipment and for the period of instructing the Owner's operating personnel shall be at the cost and expense of the Contractor furnishing such equipment.

E. Special Inspection and Testing: If the Owner or Architect/Engineer determines that any Work requires special inspection, testing or approval, not otherwise required herein, he will instruct the Contractor to order such special inspection, testing or approval, and the Contractor shall give notice as provided in subparagraph C. If such special testing or inspection reveals a failure of the Work to comply with the requirements of the Contract Documents, the Contractor shall bear all costs thereof, including compensation for the Architect/Engineer's additional services made necessary by such failure; otherwise the Owner shall bear all costs and an appropriate Change Order will be issued.

1.13 PROGRESS PHOTOGRAPHS

A. Refer to Specification Section 01300, "Submittals" for requirements pertaining to Progress Photographs.
B. Provide photographs of the site and construction throughout progress of Work produced by an experienced photographer or job superintendent experienced in taking construction photographs, acceptable to the Owner.

C. Take photos in a timely fashion to allow for their submission with each application for a payment and/or as follows (as applicable):

1. Installation of site utilities.
2. Installation of footings.
3. Installation of foundations.
4. Building pad proof roll.
5. Building pad sub grade (vapor barrier and stone).
6. Installation of concrete floors, decks, walls, etc.
7. Installation of masonry for stair towers, elevator, exterior walls, etc.
8. Installation of structural steel, steel deck and joist, etc.
9. Rough grading.
10. Installation of parking lot paving, parking lot lighting, line stripping, etc.
11. Installation of interior and exterior framing.
13. HVAC ductwork and units.
15. Installation of roofing.
16. Installation of windows, doors, hardware, etc.
17. Enclosure of walls and ceilings.
18. Interior and exterior finishes.
19. Installations of millwork, casework, trim work, etc.
20. Landscaping
21. Final Completion.

D. Digital PDFs: Color; three (3) prints of each view, 4" X 8" or larger of each view. Provide enough photos at each stage of construction to give someone not familiar with the Project a clear understanding of the progress of the work. Review photos with the Owner's representative at each stage of construction requiring photographs. The Owner will determine if additional photos will be needed.

1. PDF format.
2. Identify each print. Identify name of Project, orientation of view, date and time of view.

E. Deliver prints with each Application for Payment or at times specified by Owner with transmittal letter.

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION PROVISIONS

A. Pre-Installation Conference: Well in advance of installation of every major unit of work which requires coordination and interfacing with other work, Contractor shall meet at project site with subcontractors, installers and representatives of manufacturers and fabricators who are involved in or affected by unit of work, and in its coordination or integration with other work which has preceded or will follow. Contractor shall advise Owner and Architect of scheduled meeting dates. At each meeting review progress of other work and preparations for particular work under consideration, including requirements of contract documents, options, related
change orders, purchases, deliveries, shop drawings, product data, quality control samples, possible conflicts, compatibility problems, time schedules, weather limitations, temporary facilities, space and access limitations, structural limitations, governing regulations, safety, inspection and testing requirements, required performance results, recording requirements, and protection. Contractor shall record significant discussions of each conference, and agreements and disagreements, along with final plan of action. Distribute record of meeting promptly to everyone concerned, including Architect/Engineer and Owner.

1. Do not proceed with the work if associated pre-installation conference cannot be concluded successfully. Instigate actions to resolve impediments to performance of the work and reconvene conference at earliest date feasible.

B. Installer's Inspection of Conditions: Require Installer of each major unit of work to inspect substrate to receive the work, and conditions under which the work will be performed, and to report (in writing to Contractor) unsatisfactory conditions. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to Installer.

C. Manufacturer's Instructions: Where installations include manufactured products, comply with manufacturer's applicable instructions and recommendations for installation, to whatever extent these are more explicit or more stringent than applicable requirements indicated in contract documents.

D. Inspect each item of materials or equipment immediately prior to installation and reject damaged and defective items.

E. Provide attachment and connection devices and methods for securing work properly as it is installed; true to line and level, and within recognized industry tolerances if not otherwise indicated. Allow for expansions and building movements. Provide uniform joint widths in exposed work, organized for best possible visual effect. Refer questionable visual-effect choices to Architect for final decision.

F. Recheck measurements and dimensions of the work, as an integral step of starting each installation.

G. Install work during conditions of temperature, humidity, exposure, forecasted weather, and status of project completion, which will ensure best possible results for each unit of work, in coordination with entire work. Isolate each unit of work from non-compatible work, as required to prevent deterioration.

H. Coordinate enclosure (closing-in) of work with inspections and tests, so as to minimize necessity of uncovering work for that purpose.

I. Mounting Heights: Except as otherwise indicated, mount individual units of work at industry-recognized standard mounting heights, for applications indicated. Refer questionable mounting height choices to Architect/Engineer for final decision.

3.2. The contractor shall include in his/her proposal the cost of all control wiring and its installation for all mechanical equipment including, but not limited to, heating, ventilating and air conditioning systems, ATC systems, boilers, remote monitoring systems, etc. which systems require electrical control wiring. The contractor shall employ a sub-contractor approved by the University for all such control wiring. The sub-contractor shall provide a final certificate of electrical inspection of the control wiring. Installed or control wiring must connect to a point of electrical power supply as shown on the contract documents.
3.3 CHASES, RECESSES AND OPENINGS

A. Contractor shall build chases, recesses, openings, channels and flues, and shall leave or create holes where shown on drawings, or where directed for piping, electrical conduits, switchboxes, panelboards, flues and ducts, or any other feature of the mechanical and electrical work. All trades requiring chases, recesses, openings, etc. shall furnish to the Contractor, complete detailed drawings for all chases, recesses and openings required in connection with such work in ample time to allow the construction to proceed without interruption or delay. Comply with requirements of “Submittals” section of these specifications.

1. Contractor shall close, build in and finish around or over all chases, recesses, openings, etc. after installation of mechanical and electrical work has been completed. Should any fail to furnish the above required information in time, he shall, at his own expense, arrange for all cutting, rebuilding, patching and finishing, but shall employ the Contractor whose work must be cut to do so.

2. Contractor shall obtain prior written approval from the Architect/Engineer and the Owner before cutting or boring through beams, floor construction or supporting members.

3.4 SLEEVES, BUILT-IN ITEMS

A. Each trade shall be responsible for furnishing and setting of sleeves, built-in items, anchors, inserts, etc. for his work. Contractor shall build these items into the construction.

1. Comply with requirements of “Submittals” section in the preparation of sleeve drawings.

3.5 CUTTING AND PATCHING

A. General: Do not cut-and-patch structural work in a manner resulting in reduction of load-carrying capacity or load/deflection ratio; submit proposed cutting and patching to Architect/Engineer for structural approval before proceeding. Do not cut-and-patch operational elements and safety-related components in a manner resulting in reduction of capacities to perform in manner intended or resulting in decreased operational-life, increased maintenance, or decreased safety. Do not cut-and-patch work which is exposed on exterior or exposed in occupied spaces of building, in a manner resulting in reduction of visual qualities or resulting in substantial evidence of cut-and-patch work, both as judged solely by Architect. Remove and replace work judged by Architect to be cut-and- patched in a visually unsatisfactory manner.

1. Contractor shall do all cutting, fitting, adjusting and patching as may be required to permit the several parts to properly come together as intended and indicated.

2. Engage original Fabricator/Installer to perform cutting-and-patching of structural work, operational/ safety-related components, and visually exposed work; or, if not available, engage only recognized experts; employ only proven methods.

3. Do not cut or alter work performed under separate contracts without the Architect’s written permission.

4. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specific requirements and methods needed for proper performance of the work of this Section.

5. Verify that existing site conditions and substrate surfaces are acceptable for subsequent work. Beginning new work means acceptance of existing conditions.

6. Verify that existing substrate is capable of structural support or attachment of new work being applied or attached.

7. Examine and verify specific conditions described in individual specification sections.

8. Verify that utility services are available, of the correct characteristics, and in the correct
locations.

9. Prior to Cutting: Examine existing conditions prior to commencing work, including elements subject to damage or movement during cutting and patching. After uncovering existing work, assess conditions affecting performance of work. Beginning of cutting or patching means acceptance of existing conditions.

B. Materials: Except as otherwise indicated or approved by Architect/Engineer, provide materials for cutting-and-patching which will result in equal-or-better work than work being cut-and-patched, in terms of performance characteristics and including visual effect where applicable. Use materials identical with original materials where feasible and where recognized that satisfactory results can be produced thereby.

C. Temporary Support and Protection: Provide adequate temporary support for work to be cut, to prevent failure. Do not endanger other work. Provide adequate protection of other work during cutting-and-patching, to prevent damage; and provide protection of the work from adverse weather exposure.

D. Cut work using methods least likely to damage work to be retained and work adjoining.

1. Where physical cutting action is required, cut work with sawing and grinding tools, not with hammering and chopping tools. Core drill openings through concrete work. Comply with the requirements of applicable sections of Division 2 where cutting-and-patching requires excavating and backfilling.
2. Fit work air tight to pipes, sleeves, ducts, conduit, and other penetrations through surfaces.
3. At penetrations of fire rated walls, partitions, ceilings, or floor construction, completely seal voids with fire rated materials in accordance with Section 07841 to full thickness of the penetrated elements.
4. Refinish surfaces to match adjacent finish. For continuous surfaces, refinish to nearest intersection or natural break. For an assembly, refinish entire unit.

E. Patch with seams, which are durable and as invisible as possible. Comply with specified tolerances for the work.

1. Where feasible, inspect and test patched areas to demonstrate integrity of work.

F. Restore exposed finishes of patched areas; and, where necessary extend finish restoration onto retained work adjoining, in a manner, which will eliminate evidence of patching.

1. Where patch occurs in a smooth painted surface, extend final paint coat over entire unbroken surface containing patch, after patched area has received prime and base coats.

G. Execute cutting and patching including excavation and fill to complete the work, to uncover work to install improperly sequenced work, to remove and replace defective or non-conforming work, to remove samples of installed work for testing when requested, to provide opening in the work for penetrations of mechanical and electrical work, to execute patching to complement adjacent work, and to fit Products together to integrate with other work.

H. Execute work by methods to avoid damage to other work, and which will provide appropriate surfaces to receive patching and finishing. In existing work, minimize damage and restore to original conditions.
I. **ALL CUTTING AND PATCHING SHALL BE CONSIDERED PART OF THE BASE BID PRICE WHEN THE WORK IS REQUIRED AS PART OF THE OVERALL PROJECT. NO ADDITIONAL PAYMENT WILL BE CONSIDERED FOR WORK OF THIS SECTION UNLESS ALL APPLICABLE PARTIES OBTAIN PRIOR AUTHORIZATION OR WRITTEN APPROVAL.**

3.6 **UNCOVERING AND CORRECTION OF WORK**

A. Comply with requirements of the General Conditions of the Contract, and with additional requirements specified herein.

 1. Subsequent Disclosure of Faulty Work: Failure of Owner or Architect/Engineer to exercise powers of rejection or condemnation against the work of the Contractor during construction shall not be construed as an acceptance on Owner's part or Architect/Engineer's part that Contractor's work has been faithfully performed if the fact be otherwise.

3.7 **PROJECT CONDITIONS**

A. Protect site from puddling or running water. Provide water barriers as required to protect site from soil erosion.

B. Ventilate enclosed areas to assist cure of materials, to dissipate humidity, and to prevent accumulation of dust, fumes, vapors, or gases.

C. Pollution Control: Provide methods, means, and facilities to prevent contamination of soil, water, and air from discharge of noxious, toxic substances, and pollutants produced by construction activities. Comply with all governmental and code requirements.

3.8 **PREPARATION FOR CUTTING AND PATCHING AND/OR NEW WORK.**

A. Prepare surfaces and remove surface finishes to provide for proper installation of work and finishes.

B. Clean substrate surfaces prior to applying next material or substance.

C. Seal cracks or openings of substrate prior to applying next material or substance.

D. Apply manufacturers required or recommended substrate primer, sealer, or conditioner prior to applying any new material or substance in contact or bond.

3.9 **LAYING OUT THE WORK**

A. Verify locations of survey control points prior to starting work.

B. Promptly notify Owner’s Representative and Architect of any discrepancies discovered.

C. Protect survey control points prior to starting site work; preserve permanent reference points during construction.

D. Promptly report to Architect/Engineer and Owner’s Representative the loss or destruction of any reference point or relocation required because of changes in grades or other reasons.

E. Utilize recognized engineering survey practices.
F. Establish elevations, lines and levels. Locate and lay out by instrumentation and similar appropriate means:
 1. Site improvements including but not limited to pavements; stakes for grading, fill and topsoil placement; utility locations, slopes, and invert elevations, etc.
 2. Building foundation, column locations, all floor elevations, stairwells, elevator shafts, machine and mechanical rooms, etc.
 3. All other work as necessary to complete all the requirements of the contract documents.

G. Periodically verify layouts by same means.

H. Maintain a complete and accurate log of control and survey work as it progresses.

3.10 GENERAL INSTALLATION REQUIREMENTS

A. Install Products as specified in individual sections and in accordance with manufacturer’s recommendations.

B. Make neat transitions. Patch work to match adjacent work in texture and appearance. Where new Work abuts or aligns with existing, perform a smooth and even transition.

C. When existing finished surfaces are cut so that a smooth transition with new Work is not possible, terminate existing surface along a straight line at a natural line of division and make recommendations to the Architect and Owner.

3.11 CLEANING AND PROTECTION

A. General: During handling and installation of work at project site, Contractor shall clean and protect work in progress and adjoining work on a basis of perpetual maintenance. Apply suitable protective covering on newly installed work where reasonably required to ensure freedom from damage or deterioration at time of substantial completion; otherwise, clean and perform maintenance on newly installed work as frequently as necessary through remainder of construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

B. Removal of all debris and rubbish resulting from or relating to the construction work; rubbish shall not be thrown from building openings above the ground floor unless confined within chutes.
 1. Progress Cleaning:
 a. Maintain areas free of waste material, debris, and rubbish (on a daily basis). Maintain site in a clean and orderly condition, as determined by the Owner.
 b. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces, and other closed or remote spaces, prior to enclosing the space.
 c. Broom and vacuum clean interior areas prior to start of surface finishing and continue cleaning to eliminate dust.
 d. Collect and remove waste materials, debris, and rubbish from site periodically and dispose of off-site.
 e. Protect installed work and provide special protection where specified in individual specification sections.
 f. Provide temporary and removable protection for installed Products. Control activity during and after installation in the immediate work area to prevent damage.
g. Protect finished floors and other surfaces from traffic, dirt, wear, damage, or movement of heavy objects, by protecting with durable sheet materials appropriate for the task involved.

C. Limiting Exposures of Work: To extent possible through reasonable control and protection methods, Contractor shall supervise performance of work in a manner and by means which will ensure that none of the work, whether completed or in progress, will be subjected to harmful, dangerous, damaging, or otherwise deleterious exposures during construction period. Such exposures include (where applicable, but not by way of limitation) static loading, dynamic loading, internal pressures, external pressures, high or low temperatures, thermal shock, high or low humidity, air contamination or pollution, water, ice, solvents, chemicals, light, radiation, puncture, abrasion, heavy traffic, soiling, bacteria, insect infestation, combustion, electrical current, high speed operation, improper lubrication, unusual wear, misuse, incompatible interface, destructive testing, misalignment, excessive weathering, unprotected storage, improper shipping/handling, theft and vandalism.

D. Construction Debris: The Contractor shall intermittently remove waste and rubble so that at no time shall there be undue accumulations. Upon completion, the Contractor shall dress up all areas affected by this work whether inside or outside the boundary of the Project. Loading, crating, hauling and dumping will be at the contractor's expense.

E. Rubbish: The Contractor shall provide covered metal trash cans in sufficient quantity to accept the accumulation of rubbish and garbage from lunch and the like of employees of all Contractors working on site.

1. The Contractor shall instruct his and his subcontractors' employees to deposit their trash and garbage in these containers and not elsewhere about the site; and also not to use the containers for construction scraps, rubbish, trash and surplus materials.

2. The Contractor shall empty these containers daily and haul the rubbish to a legal disposal site off the property.

F. Roads and Pathways:

1. The Contractor is responsible for the removal of construction dirt and debris in public areas on the site and in the surrounding areas serving the site.

2. Dirt and mud tracked onto streets by the Contractor or its subcontractors is to be immediately cleaned up by the Contractor to the satisfaction of the Owner and the local municipal authorities.

G. Trucks: All trucks leaving the construction area are to be covered in accordance with NJDOT over the road requirements. Trucks leaving the site are to be clean and free of mud or other materials.

H. Quality Assurance: University streets and pathways are to be maintained in a clean safe condition at all times. Under no circumstances shall the Contractor leave the site each day without inspecting and verifying that streets and paths to the construction site, access areas, lay down areas, and gates in the area of the site are clean of all construction related materials and are clean and safe for use by the Rowan University population. The Contractor will immediately correct any violation of this provision upon notification by the Owner.

3.12 CONSERVATION AND SALVAGE

A. General: It is a general procedural requirement for Contractor's supervision and administration
of the work that construction operations be carried out with maximum practical consideration for conservation of energy, water and materials; and with maximum practical consideration for salvaging materials and equipment involved in performance of the work but not incorporated therein.

END OF SECTION 012400
SECTION 012500 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section specifies administrative and procedural requirements for handling and processing Contract modifications.

B. Related Sections include the following:
 1. Division 1 Section "Allowances" for procedural requirements for handling and processing allowances.
 2. Division 1 Section "Unit Prices" for administrative requirements for using unit prices.
 3. Division 1 Section "Product Requirements" for administrative procedures for handling requests for substitutions made after Contract award.

1.3 MINOR CHANGES IN THE WORK

A. Architect may issue through Owners project manager supplemental instructions authorizing Changes in the Work, not involving adjustment to the Contract Time, as “Architects Supplemental Instructions” (ASI). Architects Supplemental Instructions may or may not involve adjustments to the contract sum. THERE WILL BE NO ADJUSTMENTS TO THE CONTRACT TIME ALLOWED FOR THIS PROJECT.

 1. For ASI’s involving no adjustment to the contract sum or time, the contractor is authorized to execute the change or clarification immediately.
 2. For ASI’s resulting in an adjustment to the contract sum, do not consider them instructions either to stop work in progress or to execute the proposed change without obtaining written authorization from the Owner. Written authorization can include the provisions of the general conditions, Article 14, paragraphs 14.5.3 and 14.7.1, an approved change order or a Construction Change Directive.

1.4 PROPOSAL REQUESTS

A. In the event the Contractor believes that any change directed by the Owner or Architect would entitle it to additional compensation to complete its work under this contract, the Contractor shall immediately notify the Owners project manager of this fact WITHIN 48 HOURS OF RECEIPT OF THE CHANGE REQUESTED. The contractor shall then prepare and submit an original of the Change Order Request (COR) with all supporting documentation to the Owners project manager and submit two (2) copies of the Change Order Request (COR) with all supporting documentation to the Architect and University within five (5) calendar days of its receipt of the directive by the Owner and/or Architect.

B. Owner-Initiated Proposal Requests: Owner may issue proposal requests or may have the
Architect issue such requests. In any event a detailed description of proposed changes in the Work will be submitted to the contractor that may require adjustment to the Contract Sum. THERE WILL BE NO ADJUSTMENTS TO TIME FOR ANY GIVEN CHANGE ORDER REQUESTED. If necessary, the description will include supplemental or revised Drawings and Specifications.

1. Proposal Requests issued by Architect are for information only. For ASI's resulting in adjustments to the contract sum, do not consider them instructions either to stop work in progress or to execute the proposed change without first obtaining written authorization from the Owner.

2. If the contractor feels the ASI or proposal request requires a change to the contract sum then the contractor shall notify the Owners project manager of this fact within 48 hours of receipt of the ASI or OIPR directive.

3. Within five (5) business days after receipt of directive, ASI or proposal request from the Owner, submit a Change Order Request estimating cost adjustments to the Contract Sum necessary to execute the change. The contractor shall then prepare and submit an original of the Change Order Request (COR) with all supporting documentation to the Owners project manager and submit two (2) copies of the COR with all supporting documentation to the architect.

 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 b. Indicate applicable delivery charges, equipment rental, and amounts of trade discounts.
 c. Include costs of labor directly attributable to the change.
 1) Labor shall be broken down by man-hours, hourly wages, fringe benefits per hour and any other benefits payable.
 d. Include an updated Contractor's Construction Schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float however the date of Substantial and Final Completion cannot be extended.

C. In the event that the Contractor encounters a condition that it considers a change, the Contractor shall immediately notify the Owners Project Manager prior to disturbing the condition and shall then prepare and submit an original of the COR with all supporting documentation to the Owners project manager and two (2) copies of a Change Order Request with all required supporting documentation to the architect within five (5) calendar days of encountering the condition. The condition shall not be disturbed until the Project Manager has inspected the condition.

D. Contractor-Initiated Proposals: If latent or unforeseen conditions require modifications to the Contract, Contractor may propose changes by submitting a Change Order Request (COR) to Owners project manager. The contractor shall prepare and submit one (1) original of the COR with all supporting documentation to the Owners project manager and submit two (2) copies of the COR with all supporting documentation to the architect.

 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum.
 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 3. Indicate applicable delivery charges, equipment rental, and amounts of trade discounts.
 4. Include costs of labor and supervision directly attributable to the change.
 5. Include an updated Contractor's Construction Schedule that indicates the effect of the
change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float however the date of Substantial and Final Completion cannot be extended.

6. Comply with requirements in General Conditions Article 4.15 if the proposed change requires substitution of one product or system for product or system specified.

1.5 ALLOWANCES (IF APPLICABLE ON A GIVEN PROJECT)

A. Allowance Adjustment: To adjust allowance amounts, base each Allowance Request Proposal on the difference between purchase amount and the allowance, multiplied by final measurement of work-in-place. If applicable, include reasonable allowances for cutting losses, tolerances, mixing wastes, normal product imperfections, and similar margins. **Only allowances included as part of the Bid Price will be considered for an Allowance Authorization. All other Proposals must be hard costed.**

1. Include installation costs in purchase amount only where indicated as part of the allowance.
2. If requested, prepare explanation and documentation to substantiate distribution of overhead costs and other margins claimed.
3. Submit substantiation of a change in scope of work, if any, claimed in Change Orders related to allowances.
4. Owner reserves the right to establish the quantity of work-in-place by independent quantity survey, measure, or count.

B. Submit claims for increased costs because of a change in scope or nature of the allowance described in the Contract Documents, whether for the Purchase Order amount or Contractor's handling, labor, installation, overhead, and profit. Submit claims within ten (10) business days of receipt of the Change Order or Construction Change Directive authorizing work to proceed. Owner will reject claims submitted later than ten (10) business days after such authorization.

1. Do not include Contractor's or subcontractor's indirect expense in the Change Order cost amount unless it is clearly shown that the nature or extent of work has changed from what could have been foreseen from information in the Contract Documents.
2. No change to Contractor's indirect expense is permitted for selection of higher- or lower-priced materials or systems of the same scope and nature as originally indicated.

C. **Use the same procedure(s) followed for handling Change Order Requests (COR's) and Change Orders with Allowances (except use Allowance Forms rather than Change Order Forms).**

1.6 CHANGE ORDER PROCEDURES

A. Upon the Owner's approval of a Change Order Request (COR), the Owner will direct the Architect to issue a Change Order for signatures of the Contractor and Owner on AIA Document G701.

1. The Change Order breakdown shall be in sufficient detail to permit an analysis of all material, labor, equipment, sub-contract and overhead costs as well as profit. Any amount proposed for sub-contracts shall be supported by a similar price breakdown.

B. Each Change Order must contain a detailed description of the change and the amount by which the Contract Price will be increased or decreased.

C. COMPUTATION OF ADDITIONAL COMPENSATION
1. In connection with any request for additional compensation the Contractor shall furnish a price breakdown, as follows:
 a. Labor shall be broken down by the man-hour, hourly wages, fringe benefits per hour and any other benefits payable by the Contractor;
 b. Materials shall be broken down by quantity and unit prices.

2. Unless otherwise directed, the breakdown shall cover all work involved in the change whether such work was deleted, added or changed.

3. The breakdown shall be in sufficient detail to permit an analysis of all material, labor, equipment, sub-contract and overhead costs as well as profit. Any amount proposed for sub-contracts shall be supported by a similar price breakdown.

4. The following rates shall apply in computing indirect costs and profit for the negotiation of additional compensation under all provisions of this contract, which provide for such adjustments that do not exceed twenty-five thousand dollars ($25,000.00). The resulting change in the contract amount will include the indirect impact cost of extended performance computed in accordance with the terms of this article and no further consideration of such costs arising from the specific modification will be given. The percentages for overhead and profit shall be negotiated and may vary according to the nature, extent and complexity of the work involved. If not negotiated prior to the start of construction then the rates herein designated shall apply. The percentages shall be applicable for deleted work as well as additional work. When a change consists of both added and deleted work, the applicable percentages shall be applied to the net cost or credit. In any event, the percentages shall not exceed the sum of the following:

 a. Overhead will be the sum of ten percent (10%) of direct labor costs.
 1) For the purpose of the article, the term direct labor shall include all labor by contractor's employees necessary to perform the actual work on site. Foremen, equipment operators and skilled, semi-skilled and common laborers directly assigned to the specific operation are direct labor; project managers, superintendents, office personnel, and subcontractors are not direct labor.
 2) The term direct labor costs shall consist of the contract or actual payroll rate of wage per hour and fringe benefits paid for each and every hour that such employees are actually engaged in the performance of the work. Overhead will be the sum of ten percent (10%) of direct material costs.

 b. Overhead will be the sum of ten percent (10%) of direct material costs.
 1) For the purpose of the article, the term direct material costs shall consist of the actual costs of the materials, including applicable tax and transportation charges.

 c. For rented equipment, an hourly rental rate will be used which will be determined by using the monthly rental rates taken from the current edition of the rental rate blue book for construction equipment and dividing it by one hundred seventy-six (176). An allowance will be made for operating costs for each and every hour the equipment is actually operating in accordance with the rate listed in the aforesaid rental book. The contractor will be allowed only sixty-five percent (65%) of the rental rate on contractor owned equipment.

 d. Bond premiums, insurance, payroll taxes and travel subsistence, if applicable, will be allowed at actual cost (only) for the equitable adjustment allowed. No mark-up will be allowed for overhead on these indirect cost items.

 e. The contractor's profit on the sub-contractor's work will be five percent (5%) of the sub-contractor's costs. Sub-contractor indirect costs will be computed in the same manner as for the contractor. The contractor agrees to incorporate this article in each of it sub-contracts.

 f. A profit of six percent (6%) where profit is allowable by the terms of the applicable contract provision shall be added to the contractor's total cost for the equitable adjustment allowed for the work conducted by the contractors own workforce. Indirect costs will not be duplicated in direct costs.

 g. When more than one (1) tier of sub-contractors exists, they shall be treated as one
(1) sub-contractor for the purpose of mark-ups.

D. ANY CONTRACTOR PERFORMING CHANGE ORDER WORK WITHOUT WRITTEN APPROVAL FROM THE OWNER DOES SO AT ITS OWN RISK.

1. Only the signature of an Assistant Vice President or above is authorized to give approval of a Change Order Request (COR) or Change Order (CO). The Owners project manager is not authorized to approve change orders. The project manager is only authorized to verify the work in question is in addition to or outside the scope of work delineated on the original contract documents.

1.7 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PERFORMANCE OF CHANGE ORDER WORK

A. A contractor who performs any scope of work associated with a change order or allowance (if allowances are applicable on a given project) without receiving proper approval in accordance with all contract document requirements hereof does so at its own risk. The Contractor shall have waived any and all claims for additional compensation related to said changes or conditions encountered.

END OF SECTION 012500
SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Sections include the following:

1. Division 1 Section "Allowances" for procedural requirements governing handling and processing of allowances.

2. Division 1 Section "Unit Prices" for administrative requirements governing use of unit prices.

3. Division 1 Section "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.

4. Division 1 Section "Construction Progress Documentation" for administrative requirements governing preparation and submittal of Contractor's Construction Schedule and Submittals Schedule.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the Schedule of Values with preparation of Contractor's Construction Schedule.

1. Correlate line items in the Schedule of Values with other required administrative forms and schedules, including the following:

 a. Application for Payment forms with Continuation Sheets.

 b. Submittals Schedule.

2. Submit the Schedule of Values submission to Architect and Owners Construction Manager in accordance with the general conditions and general conduct of work.

3. Sub schedules: Where the Work is separated into phases requiring separately phased payments, provide sub schedules showing values correlated with each phase of payment.

B. Format and Content: Use the Project Manual table of contents as a guide to establish line
1. Identification: Include the following Project identification on the Schedule of Values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.

2. Arrange the Schedule of Values in tabular form with separate columns to indicate the following for each item listed:
 a. Related Specification Section or Division.
 b. Description of the Work.
 c. Name of subcontractor.
 d. Name of manufacturer or fabricator.
 e. Name of supplier.
 f. Change Orders (numbers) that affect value.
 g. Dollar values
 h. Cost totals.
 1) Percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.

3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide several line items for principal subcontract amounts, where appropriate.
 a. Use data from approved Schedule of Values. Provide dollar value in each column for each line item for portion of work performed.

4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.

5. Provide a separate line item in the Schedule of Values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 a. Differentiate between items stored on-site and items stored off-site.
 b. The University may, in its sole discretion, pay the Contractor for material delivered on the site and preparatory work done to be taken into consideration. Material delivered to the contractor at locations other than the site may also be taken into consideration if (1) such consideration is specifically authorized by the contract and (2) the contractor furnishes a form entitled "Contractor's Summary of Stored Materials" and agreement and bill of sale certification, respectively, for stored materials and (3) the contractor furnishes evidence of insurance for said materials or a bonded warehousing agreement.

6. Provide separate line items in the Schedule of Values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

7. Allowances: Provide a separate line item in the Schedule of Values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities. Allowances will only be accepted for items listed in the Bid Documents.

8. Each item in the Schedule of Values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place must be shown as separate line items in the Schedule of Values.

9. Schedule Updating: Update and resubmit the Schedule of Values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.
 a. List each authorized Change Order as a separate line item, listing Change Order number and dollar amount as for an original item of work.
1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.

1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.
2. Submit three (3) copies of each Application for Payment, at least five (5) business days prior to the actual submission date as specified. This Application will be reviewed and adjusted by all parties (Architect, Owner and Contractor) at a "PENCIL COPY REVIEW" meeting prior to final approval.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction Work covered by each Application for Payment is the period indicated in the Agreement.

C. Payment Application Times: The date for each progress payment is per the General Conditions. The period covered by each Application for Payment starts on the day following the end of the preceding period and ends 15 days before the date for each progress payment.

D. Payment Application Forms: Use AIA Document G702 and AIA Document G703 Continuation Sheets

E. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Project Manager will return incomplete applications without action.

1. Entries shall match data on the Schedule of Values and Contractor's Construction Schedule. Use updated schedules if revisions were made.
2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

F. Transmittal: Submit 3 (three) signed and notarized original copies of each Application for Payment to Project Manager by a method ensuring receipt within 24 hours. All copy's shall include ‘Attachment to G702- Certification for Payment”, Release of Liens Forms (included in the Contract Documents) entirely completed for the contractor, all subcontractors and anyone else whose payment is listed in the Schedule of Values for the application being requested, AIA G706 A-Contractors Affidavit…, Certified Payrolls and Monthly Work Force Reports, updated and current Construction Schedule, updated and current Submittal Log, and current Project Photograph’s.

1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

G. Release of Mechanic's Lien: With each Application for Payment, submit partial or final releases of mechanic's lien (as may apply) from every entity that is lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.

1. Submit partial waivers on each item for amount requested, before deduction for retainage, on each item.
2. When an application shows completion of an item, submit final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Submit final Application for Payment with or proceeded by final waivers from every entity involved with performance of the Work covered by the application that is lawfully entitled to a lien.
5. Release Forms: Submit release of lien on forms, executed in a manner acceptable to Owner. (Use Form listed in Division 0 of the Specifications).

H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.
2. Schedule of Values.
3. Contractor's Construction Schedule (preliminary if not final).
 a) A final schedule must be submitted prior to Owners payment of the second (2nd) progress payment.
4. Products list.
5. Schedule of unit prices.
7. List of Contractor's staff assignments.
8. List of Contractor's principal consultants.
11. Initial progress report.
13. Certificates of insurance and insurance policies.
15. Data needed to acquire Owner's insurance.
16. Initial settlement survey and damage report if required.
17. Current construction photographs as specified herein.

I. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

J. Final Payment Application: Submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
4. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
6. AIA Document G707, "Consent of Surety to Final Payment."
7. Evidence that claims have been settled.
8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.

K. When Owner or Architect/Engineer requires substantiating information, submit data justifying
dollar amounts in question. Provide one (1) copy of data with cover letter for each copy of submittal. Show application number and date, and line item by number and description.

1. Any other information or documentation required by other provisions of the contract documents shall be supplied.

L. In order to be proper an Application for Payment must include the following as applicable:

1. Total amount, payee name and address, department/agency, payee declaration, payee reference number and identification number.
2. Contract number, contractor’s name, period of the Application, completion date, number of sheets, amount due this period, amount to date, retainage, certification by payee, certification signed by the Project Manager and Architect and approval of payment signed by the contracting officer or his/her designee, previous payment requests, total deductions and additions.
3. In making progress payments for work, the University will retain two percent (2%) of the approved invoice of payment until final acceptance and completion of all work covered by the contract.
4. After fifty percent (50%) of the work has been completed, upon written request by the contractor and provided the contracting officer determines that the contractor’s performance and progress have been satisfactory, the University will make partial payments thereafter in full of the approved payment amount. If, however, progress is not maintained in accordance with the approved schedule, the contracting officer may elect to reinstitute retainage of two percent (2%) of amounts due to the contractor. The contracting officer shall have the sole authority to determine whether contractor’s performance and progress warrant waiver of two percent (2%) retainage.

M. Upon acceptance and completion of each building or other clearly definable severable portion of the contract work for which the price is stated separately within the contract, payment may be made in full at the discretion of the contracting officer including retained percentages thereon less authorized deductions.

N. All authorized Applications are to be sent to the Owners authorized representative at the address provided at the pre-construction conference. Receipt shall start the prompt payment clock unless returned to the contractor for correction within thirty (30) calendar days after receipt. Reference section 10.2.4 (d) of the General Conditions.

1.6 FINAL PAYMENT

A. Upon final acceptance, the amount due the contractor under this contract shall be paid upon satisfactory completion by the contractor of all contract close-out requirements as required by the University, completion of a University audit on all contract values and payments and after the contractor shall have furnished the University with a final release of liens from the contractor and all subcontractors, sub-subcontractors, vendors, suppliers and any other entity affiliated with the contractor for completion of this project of any and all claims against the University arising by virtue of this contract other than claims in stated amounts as may be specifically excepted by the contractor from the release.

B. Upon satisfying the above conditions, the contractor shall submit a properly executed Application for Final Payment to the University through the Project Manager. The University Controller shall date stamp the Application. This action by the University Controller shall constitute receipt of a properly executed State invoice application.

C. If, for any reason, the contractor refuses final payment, the project shall be closed-out by the University unilaterally processing a final acceptance certificate. The University will hold all residual funds in escrow until all claims of the University and all contractors are satisfied.
SECTION 013100 - COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, general conduct of the Work and Special Requirements, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes administrative and supervisory requirements necessary for coordinating construction operations including, but not necessarily limited to, the following:

1. General project coordination procedures.
2. Conservation.
3. Coordination Drawings.
4. Administrative and supervisory personnel.
5. Cleaning and protection.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. Division 1 Section "Field Engineering" specifies procedures for field engineering services, including establishment of benchmarks and control points.
2. Division 1 Section "Submittals" for preparing and submitting the Contractor's Construction Schedule.
3. Division 1 Section "Contract Closeout" for coordinating contract closeout.

1.3 COORDINATION

A. Coordinate construction operations included in various Sections of these Specifications to assure efficient and orderly installation of each part of the Work. Coordinate construction operations included under different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in the sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components to assure maximum accessibility for required maintenance, service, and repair.
3. Make provisions to accommodate items scheduled for later installation.

B. The mechanical, electrical and fire protection drawings are diagrammatic only and are not intended to show the alignment, physical locations or configurations of such work. Such work shall be coordinated by the Contractor and shall be installed to clear all obstructions, permit proper clearances for the work of other trades, satisfy all code requirements and present an orderly appearance where exposed at no additional cost to the Owner.

C. Where necessary, prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and
attendance at meetings.

1. Prepare similar memoranda for the Owner and separate contractors where coordination of their work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and assure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Prepare and coordinate scheduling, delivery and processing of submittals, and work of the various sections of the Project Manual to ensure efficient and orderly sequence of installation of interdependent construction elements, with provisions for accommodating items installed later.
2. Verify that utility requirements and characteristics of operating equipment are compatible with building utilities. Coordinate work of various sections having interdependent responsibilities for installing, connecting to, and placing in service, such equipment.
3. Coordinate space requirements, supports, and installation of mechanical and electrical work, which are indicated diagrammatically on the Drawings. Follow routing shown for pipes, ducts and conduit, as closely as practicable; place runs parallel with lines of building. Utilize spaces efficiently to maximize accessibility for other installations, for maintenance and for repairs.
5. Progress meetings.
6. In finished areas except as otherwise indicated, conceal pipes, ducts, and wiring within the construction. Coordinate locations of fixtures and outlets with finish elements.
7. Coordinate completion and clean-up of work of separate sections.
8. After Owner occupancy of premises, coordinate access to site for correction of defective work and work not in accordance with Contract Documents, to minimize disruption of Owner's activities.
9. Project closeout activities.

E. Conservation: Coordinate construction operations to assure that operations are carried out with consideration given to conservation of energy, water, and materials.

1. Salvage materials and equipment involved in performance of, but not actually incorporated in, the Work.

1.4 SUBMITTALS

A. Coordination Drawings: Prepare coordination drawings where careful coordination is needed for installation of products and materials fabricated by separate entities. Prepare coordination drawings where limited space availability necessitates maximum utilization of space for efficient installation of different components.

1. Show the relationship of components shown on separate Shop Drawings.
2. Indicate required installation sequences.
3. Comply with requirements contained in Section "Submittals."
 a. Note the coordination drawing submittal requirements under Section 013300 "Submittals", paragraph 2.3.9

B. Staff Names: Within fifteen (15) days of commencement of construction operations, submit a list of the Contractor’s principal staff assignments, including the superintendent and other personnel in attendance at the Project Site. Identify individuals and their duties and responsibilities. List their addresses and telephone numbers.

1. Post copies of the list in the Project meeting room, and the temporary field office.
PART 2 - EXECUTION

2.1 GENERAL COORDINATION PROVISIONS

A. Inspection of Conditions: Require the Installer of each major component to inspect both the substrate and conditions under which Work is to be performed. Do not proceed until unsatisfactory conditions have been corrected in an acceptable manner.

B. Coordinate temporary enclosures with required inspections and tests to minimize the necessity of uncovering completed construction for that purpose.

2.2 CLEANING AND PROTECTION

A. Clean and protect construction in progress and adjoining materials in place, during handling and installation. Apply protective covering where required to assure protection from damage or deterioration at Substantial Completion.

B. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to assure operability without damaging effects.

C. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

END OF SECTION 013100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions (Contract Administration Division Section D), General Conduct of the Work and Special Requirements, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUBMITTALS

A. Within three (3) days after the date established in the Notice to Proceed, University Contract and/or purchase order submit preliminary schedule indicating the scope of work for the duration of the project. A Gantt chart format will be acceptable however the final approved schedule must be in both a Gantt chart and CPM schedule format. If another method other than CPM is used the critical path and float time must be established and programmed into the schedule.

B. Initial Working CPM Schedule Submittal: To the extent necessary for the Contractor to reflect in the arrow diagram the plan for completion of this contract, the contractor shall meet with and furnish all necessary information for the preparation of the scheduling system within ten (10) calendar days after award of this contract. This information shall include, but not necessarily be limited to, logical sequencing of work operations; activity time estimated, intended crew flow, activity costs and estimated manpower requirements of each activity.

1. The contractor shall be responsible to reflect all sub-contractor work as well as his/her own work in proper coordinated sequence on the network diagram. The contractor shall be prepared to meet as many times as necessary with the Project Manager for the timely development of the project schedule.

1.3 SCHEDULE FORMAT

A. Listings: In chronological order according to the start date for each activity. Identify each activity with the applicable specification section number. At a minimum provide the following.

1. Include a separate bar for each portion of work or operation.
2. Identify the first workday of each week.
3. Identify each critical path task or portion of work.
4. Identify task durations, predecessors and dependent tasks.
5. Identify milestone dates for completion/start of each critical path element.

B. The contractor shall utilize the earliest scheduled start and finish dates in planning, coordinating and performing the work under this contract including all activities of sub-contractors, equipment vendors and suppliers.

PART 2 - PRODUCTS – NOT USED
PART 3 - EXECUTION

3.1 CONTENT

A. Construction logic and activity time durations shall be established by the contractor subject to approval by the Owner’s Project Manager consistent with contract requirements and reflective of proper coordination between trades.

B. The Owner’s Project Manager shall establish the specific level of detail to be reflected in the scheduling system.

C. Seasonal weather conditions shall be considered in the planning and scheduling of all work influenced by high or low ambient temperatures for the completion of all contract work within the allotted contract time. In addition, appropriate allowances shall be made for anticipated time losses due to normal rain and snow conditions by statistically expanding the estimated time durations for weather sensitive activities with the constraint that the substantial completion deadline cannot change.

D. The coordinated combined Progress Schedule the Contractor will develop shall incorporate the schedules of all Prime Contractors engaged on the project. The Schedule shall be in a form as specified herein and elsewhere in the contract documents and in sufficient detail to satisfy the Architect/Engineer and the University.

E. If applicable, the Contractor shall submit copies of his initial draft of this Schedule to all Prime Contractors. Each Prime Contractor shall then prepare a Progress Schedule for his own work, properly coordinated with the General Construction Contractor’s initial draft and then submit it to the General Construction Contractor for his preparation of the final draft of a Single Coordinated Progress Schedule. Contract Requisitions will not be processed by the University until and unless such a single coordinated Progress Schedule shall have been submitted to and approved by the University Project Manager and/or Contracting Officer. This submission shall be no later than thirty (30) colander days after the award of the Contract. If any Prime Contractor delays his submission, the Project Schedule will be submitted without his input and any payments otherwise due him will be withheld until he complies.

F. The Progress Schedule based upon the Contractor’s logic and time estimates shall indicate, in suitable detail for display, all significant features of the Work of each Contractor, including the placing of orders and anticipated delivery dates for critical items and all other critical path activities, submissions and approvals of Shop Drawings, all work activities to be performed by each Contractor and the beginning and time durations thereof, float time and the dates of substantial and final completion of the various branches of the Work.

1. Show complete sequence of construction activity, with dates for beginning and completion of each element of construction.
2. Identify each item by specification section number or per bid form breakdown.
3. Show accumulated percentage of completion of each item, and total percentage of Work completed, as of the first day of each month.
4. Indicate delivery dates as milestones for Owner-furnished items and any critical path items.
5. Provide legend for symbols and abbreviations used.
6. Show critical path tasks; differentiate them from other construction tasks.
7. Schedule will be based upon a five-day workweek.
3.2 REVIEW AND EVALUATION OF SCHEDULE

A. Review and Approval of Initial Working Schedule: Within ten (10) calendar days after receipt of the initial arrow diagram and computer produced schedule, the University's representative shall meet with the contractor and for joint review, correction or adjustment of the proposed plan and schedule to evaluate the cost values assigned to each activity. Within ten (10) calendar days after the joint review, the Contractor will revise the arrow diagram and the computer-produced schedule in accordance with agreement reached during the joint review and shall submit two (2) copies each of the revised arrow diagram, computer-produced schedule and cost requisition to the University. The resubmission will be reviewed by the University and, if found to be as previously agreed upon, will be approved. An approved copy of each will be returned to the Contractor. The contractor shall review the schedule to ensure that it reflects all changes agreed to and, if all changes have been made, the contractor shall approve and sign the network diagrams, computer-produced schedule and cost requisition listing at that time. Approval will be without reservation and the contractor will be deemed to have accepted the schedule as adequate, proper and binding in all respects and shall not raise objections to the schedule. After the network diagrams, computer-produced schedule and cost requisition listing have been signed, the Contractor shall forward one (1) set of signed copies of all scheduling documents to the University Project Manager. The arrow diagram and the computer-produced schedule with approved signatures shall constitute the project work schedule until subsequently revised in accordance with the requirements of this section.

B. Evaluate project status to determine work behind schedule and work ahead of schedule. Submit revised recovery schedule with action plan to bring “behind schedule” tasks and milestones back into original timeline.

3.3 UPDATING SCHEDULES

A. Maintain schedules to record actual start and finish dates of completed activities.

1. Updated schedules must be submitted at each progress meeting and with each application for payment or as required by Architect or Owner. These schedules must include the following:
 a. approved changes in activity sequencing;
 b. changes in activity durations for unstarted or partially completed activities where agreed upon;
 c. the effect to the network of any delays in any activities in progress and/or the impact of known delays, which are expected to affect future work;
 d. the effect of contractor modifications; i.e., activity durations, logic and cost estimates; to the network;
 e. changes to activity logic where agreed upon to reflect revision in the contractor’s work plan; i.e., changes in activity duration, cost estimates and activity sequences for the purpose of regaining lost time or improving progress;
 f. changes to milestones, and due dates (except substantial completion) which have been agreed upon by the University since the last revision of the schedule.

B. At the same time the network is updated, the contractor and the University’s representative shall jointly make entries on the preceding network diagram schedule to show actual progress, to identify those activities started by date and those completed by date during the previous period to show the estimated time required to complete each activity started but not yet completed, to show activity percent completed and to reflect any changes in the arrow diagram approved in accordance with the preceding paragraph. After completion of the joint review and the University’s approval of all entries, the Contractor will submit updated network diagrams and an updated computer-produced calendar dated schedule to the University and the
contractor.

1. The resultant computer print-out and network diagrams shall be recognized by the contractor as solely his/her updated construction schedule to complete all remaining contractor work except that portion affected by interim University decisions.

3.4 DISTRIBUTION OF SCHEDULES

A. Upon approval at each level of schedule development (preliminary, final for Contractors work and Single Coordinated including all Prime Contractors work) the Contractor shall prepare and distribute (10) copies of the schedule at each level to the University. The Contractor shall also prepare and distribute two (2) copies of the final schedule showing Prime Contractors work to each Prime Contractor. In the event a new Prime Contractor is added to the job the General Construction Contractor shall furnish a revised schedule immediately with copies as indicated. The final coordinated schedule shall be signed and dated by all Prime Contractors involved and shall become part of the contract documents.

B. Distribute copies of updated (current) schedules to Contractors project site file, subcontractors, suppliers, Architect and Owner at each bi-weekly progress meeting. Also submit an updated (current) schedule with each Application for Payment or more often as required by the Architect and/or Owner.

3.5 SCHEDULE ADJUSTMENTS

A. Upon Owner and/or Architects request, if Contractor falls behind the approved schedule, the Contractor must submit a revised schedule to show how the Contractor intends to accomplish the completion of the work within the original contract time.

1. Within seven (7) days after receipt of notice from the Owner, the contractor shall submit to the University in writing an explanation of corrective action taken or proposed. The contracting officer shall make a decision binding on all parties after reviewing the written submissions.

B. Responsibility for Completion: The contractor agrees that whenever it becomes apparent from the current monthly computer produced calendar dated schedule that any contract completion date will not be met, he/she will take some or all of the following actions at no additional cost to the University.

1. increase construction manpower in such trades and numbers as will substantially eliminate the backlog of work in the opinion of the Construction Manager and contracting officer
2. increase the number of working hours per shift, shifts per working days, working days per week or the amount of construction equipment of any combination of the foregoing sufficiently to substantially eliminate the backlog of work in the judgment of the Construction Manager and contracting officer
3. reschedule activities to achieve maximum practical concurrence of accomplishment of activities

C. Lost time due to weather conditions will not accrue nor be credited to Contractor for weather delays with time added to the Substantial Completion milestone deadline. No weather delays will be granted once the building is under roof.

3.6 BI-WEEKLY REPORTING
A. Upon request from the Owner, the Contractor shall furnish for approval, his proposed operating schedule for the next immediate two-week period of time. This schedule will be submitted at each bi-weekly progress meeting along with the overall updated schedule.

1. Every two (2) weeks, the Architect will conduct a coordination and scheduling meeting on the job site. At this meeting, the contractor shall provide detailed information in the form of a bar chart schedule regarding the work schedule to be performed during the upcoming two (2) weeks. Bi-weekly scheduling by the contractor shall be in accordance with the priorities and degree of concurrent work required by the official schedule for the project. The contractor shall be prepared to explain a difference between the contractor’s bi-weekly schedules and the priorities required by the latest updating of the official schedule.

2. At the bi-weekly scheduling meeting, the Owner and Architect shall review the bar charts for the preceding two (2) weeks and the contractor shall report the progress actually achieved for each activity, which was scheduled to be performed during the two (2) weeks, including the actual dates on which the work was performed. The contractor agrees that this information shall constitute the official historical record of project progress. At each bi-weekly scheduling meeting, the contractor shall document any current delays to work operations. In addition, the contractor shall provide any available information regarding any potential delays, which they anticipate; i.e., procurement delays, expected strikes, etc.

3. Following the bi-weekly scheduling meeting, the Contractor shall issue to the Owner and Architect a new set of bi-weekly bar charts as developed at the meeting, which shall constitute the construction schedule for the upcoming two (2) weeks. The Contractor shall also issue a narrative bi-weekly progress analysis documenting progress achieved during the preceding two (2) weeks and analyze delays reported to constitute current or anticipated impacts to timely construction. The revised bar chart schedule and progress narrative shall agree with the meeting minutes and items discussed and agreed to at the bi-weekly meeting.

4. The contractor shall be represented at the bi-weekly scheduling meeting by their Construction Manager who shall have complete authority to provide the information required for the development of the next two (2) weeks bar chart schedule, documentation of past progress and documentation of delays. The contractor representatives shall also be authorized to discuss correction action planned to overcome delaying conditions at these meetings.

3.7 DAILY REPORTS

A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at the Project site:

1. List of subcontractors at Project site.
2. List of separate contractors at Project site.
3. Approximate count of personnel at Project site.
4. Equipment at Project site.
5. Material deliveries.
6. High and low temperatures and general weather conditions.
7. Accidents.
8. Meetings and significant decisions.
9. Unusual events (refer to special reports).
10. Stoppages, delays, shortages, and losses.
11. Meter readings and similar recordings.
13. Orders and requests of authorities having jurisdiction.
14. Change Orders received and implemented.
15. Construction Change Directives received and implemented.
16. Services connected and disconnected.
17. Equipment or system tests and startups.
18. Partial Completions and occupancies.
19. Substantial Completions authorized.

B. Field Condition Reports: Immediately on discovery of a difference between field conditions and the Contract Documents prepare and submit a detailed report. Submit with requests for interpretation. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

END OF SECTION 013200
SECTION 013300 SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, General Conduct of the Work, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section augments requirements set forth in the General Conditions and specifies administrative and procedural requirements for submittals required for performance of the Work, including:

1. Contractor’s Use of Architect’s CAD Files.
2. Shop Drawings.
3. Product Data.
4. Samples.
5. Informational Submittals.
6. Delegated Design.

B. Administrative Submittals: Refer to General Conditions, other Division 1 Sections and other Contract Documents for requirements for administrative submittals. Such submittals include, but are not limited to:

1. Permits.
2. Contractor’s Construction Schedule.
4. Schedule of Values.
5. Applications for payment.

C. Related Sections include the following:

1. Division 1 Section "Project Management and Coordination" for submitting and distributing meeting and conference minutes and for submitting Coordination Drawings.
2. Division 1 Section "Quality Requirements" for submitting test and inspection reports and for mockup requirements.
3. Division 1 Section "Closeout Procedures" for submitting warranties.
4. Division 1 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
5. Division 1 Section "Demonstration and Training" for submitting videotapes of demonstration of equipment and training of Owner's personnel.
6. Divisions 2 through 16 Sections for specific requirements for submittals in those Sections.

1.3 DEFINITIONS
A. Action Submittals: Written and graphic information that requires Architect and Construction Manager's responsive action.

B. Informational Submittals: Written information that does not require Architect and Construction Manager's responsive action. Submittals may be rejected for not complying with requirements.

C. Concurrent Review: Simultaneous review by Architect and other discipline(s).

D. Shop Drawings: Original fabrication drawings.

E. Product Data: Manufacturer's standard product literature and samples.

1.4 SUBMITTAL PROCEDURES

A. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

B. Submittals Schedule: Comply with General Conditions and other requirements of the Contract Administration Division. A submittal schedule will be developed by the Contractor within 10 working days of Notice to Proceed and approved by the Architect within 10 working days after receipt for review.

1. Follow the submittal requirements listed in this Section and elsewhere throughout the Contract Documents however and in addition to submittals required in other specification sections, one (1) copy of all HVAC, sprinkler, plumbing, electrical, and control system submittal must be forwarded to the Owners Project Manager. At minimum, for submittals other than those listed under this item a transmittal must be forwarded to the Project Manager.

C. Contractor shall record all submittal information on the required “Submittal Log”. Distribute Log at each progress meeting.

D. Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

1. Initial Review: Allow 5 working days for initial review of each submittal. Allow 10 working days if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
3. Resubmittal Review: Allow 5 working days for review of each resubmittal.
4. Concurrent Consultant Review: Where the Contract Documents indicate that submittals may be transmitted simultaneously to Architect and to Architect's consultants, allow 10 working days for initial review of each submittal. Submittal will be returned to Contractor,
through Architect. Submittals in the following sections require concurrent consultant review:
 a. Division 3: All Sections.
 b. Division 5: Sections 05120 “Structural Steel”, 05310 “Steel Deck”, 05300 “Steel Joists.
 c. Division 9: Acoustic Sections
 d. Division 13: All Sections.
 e. Division 15: All Sections.
 f. Division 16: All Sections.

5. Concurrent Transmittal to Consultant: Where indicated above and acceptable to Architect, Contractor may transmit submittals directly to Architect’s consultants in the required number of copies, while at the same time transmitting two additional copies of the entire submittal including the transmittal to the Architect.

6. Concurrent Transmittal to Owner:
 a. Transmit two (2) additional copies of all shop drawings, product data and coordination drawings and coordination drawings and one (1) set of each sample submittal to Owner’s Project Manager.

E. Identification: Place a permanent label or title block on each submittal for identification.
 1. Indicate name of firm or entity that prepared each submittal on label or title block.
 2. Provide a space approximately 4 by 5 inches on label or beside title block to record Contractor’s review and approval markings and action taken by Architect.
 3. Include the following information on label for processing and recording action taken:
 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name and address of Contractor.
 e. Name and address of subcontractor.
 f. Name and address of supplier.
 g. Name of manufacturer.
 h. Submittal number or other unique identifier, including revision identifier.
 1) Architect will assign own numbers to each submittal, which may be different than those assigned by the Contractor.
 i. Number and title of appropriate Specification Section, and Keynote reference where applicable.
 j. Drawing number and detail references, as appropriate.
 k. Other necessary identification.

F. Deviations: Encircle or otherwise specifically identify deviations from the Contract Documents on submittals.

G. Additional Copies: Unless additional copies are required for final submittal, and unless Architect observes noncompliance with provisions in the Contract Documents, initial submittal may serve as final submittal.

 1. Submit specified number of copies of submittal to concurrent reviewer in addition to one complete copy and transmittal to Architect.
 2. Additional copies submitted for maintenance manuals will not be marked with action taken and will be returned.

H. Transmittal: Package each submittal individually and appropriately for transmittal and handling. Transmit each submittal using a transmittal form. Architect will return submittals, without review, received from sources other than Contractor.
1. Transmittal Form: Provide locations on form for the following information:
 a. Project name.
 b. Date.
 c. Destination (To:).
 d. Source (From:).
 e. Names of subcontractor, manufacturer, and supplier.
 f. Category and type of submittal.
 g. Submittal purpose and description.
 h. Specification Section number and title.
 i. Drawing number and detail references, as appropriate.
 j. Submittal and transmittal distribution record.
 k. Remarks.
 l. Signature of transmitter.

2. On the transmittal record relevant information and requests for data. On the form, or separate sheet, record deviations from Contract Document requirements, including minor variations and limitations. Include Contractor's Certification that information complies with Contract Document requirements.

I. Contractor's Certification: All scale and full-size shop, erection or setting drawings, roughing drawings, sleeve and opening drawings, product data, and samples shall be examined and checked by qualified technical employees of Contractor as to accuracy, completeness and compliance with all contract documents prior to submission to the Architect for his review. These drawings, data and samples shall be stamped and signed by Contractor certifying to such examination and compliance. Any drawings, data and samples not checked, stamped, and signed by Contractor will be returned unchecked, to Contractor. Contractor will be held responsible for any delay in the progress of the work due to his failure to observe these requirements, and the time for the completion of his contract will not be extended on account of his failure to submit drawings, data and samples promptly in accordance herewith.

J. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked "No Exceptions Taken", or “Make Corrections Noted”.

K. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, and authorities having jurisdiction, and others as necessary for performance of construction activities. Furnish one (1) copy of final submittals to Owner. Show distribution on transmittal forms.

L. Use for Construction: Use only final submittals with mark indicating "No Exceptions Taken" or “Make Corrections Noted” by Architect.

M. In instances where sepias, shop drawings and/or erection of drawings of a scale larger than the contract drawings are prepared by a contract, such drawings and sepias will be accepted in lieu of marked-up contract drawings provided they are updated according to the contract documents. A master sheet of the same dimensions as the contract drawings shall be prepared by the contractor on a tracing which shall indicate, sheet by sheet, a cross-reference to all shop drawings pertaining to that drawing. All drawings and sepias as required by Section 2.8 F below, shall be labeled "as-built" and dated above the tile block.

1.5 CONTRACTOR'S USE OF ARCHITECT'S CAD FILES
A. General: Architect may provide electronic copies of CAD files of the Contract Drawings for Contractor’s use in preparing submittals subject to execution by the Contractor of a waiver and payment to the Architect for this service in the amount of $250. In accordance with the language of the waiver, the agreement is non-transferable by the Contractor to any Subcontractor, from any Subcontractor to the Contractor or from any Subcontractor to another Subcontractor. A separate waiver and payment is required for each individual contractor or subcontractor requesting electronic copies of CAD Drawings.

1. A sample copy of the waiver is included at the end of this Section. Upon request, Architect will provide an original.
2. This service is not available prior to the award of the contract.
3. Architect’s consultants may or may not provide CAD files under the above agreement. Such consultants reserve the right to refuse to provide CAD files, regardless of whether or not the aforementioned waiver and fee agreement is executed. Consultants may, if they agree to provide CAD files, attach additional conditions to those listed above and below. Architect’s consultants include the following disciplines: civil, landscape, structural, mechanical, electrical, plumbing, and fire protection. Architect will advise Contractor if any consultants will not provide CAD files prior to executing above agreement.
4. CAD files will be provided in AutoCAD 2014 format or newer version only.
5. CAD files will be provided in Architect’s office standard conventions for file structure, file names, layering standards, drafting standards, etc. Architect will not make revisions to these standards for the convenience of the Contractor.
6. CAD files may or may not contain differences from the Contract Documents, including work and information related, but not limited to, alternate designs, obsolete designs, addenda, bulletins, construction sketches, and informational sketches. Such differences may or may not be clearly indicated. Where such differences are found, they do not supersede the Contract Documents.

PART 2 - PRODUCTS

2.1 ACTION SUBMITTALS

A. General: Prepare and submit Action Submittals required by individual Specification Sections.

B. When the following are specified in individual sections, submit them for review:

1. Shop drawings.
2. Samples for selection.
3. Samples for verification.
4. HVAC Test and Balance Reports.

C. Submit to Architect for review for the limited purpose of checking for conformance with information given and the design concept expressed in the contract documents.

D. Architect will consult with the Owner prior to rendering a decision or approval.

2.2 PRODUCT DATA

A. Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard printed data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer's written recommendations.
 b. Manufacturer's product specifications.
 c. Manufacturer's installation instructions.
 d. Standard color charts.
 e. Manufacturer's catalog cuts.
 f. Wiring diagrams showing factory-installed wiring.
 g. Printed performance curves.
 h. Operational range diagrams.
 i. Mill reports.
 j. Standard product operation and maintenance manuals.
 k. Compliance with specified referenced standards.
 l. Testing by recognized testing agency.
 m. Application of testing agency labels and seals.
 n. Notation of coordination requirements.
4. Submit Product Data before or concurrent with Samples. Each item of materials listed shall be marked “as specified” or “unspecified” as the case may be.
5. Number of Copies: Submit one original and three copies. For color charts submit four original color charts. One original and one copy will be returned. Reproduction for distribution to subcontractors, manufacturers, fabricators and suppliers is the responsibility of the Contractor.
 a. Concurrent Submittals to Consultants: Submit one original and three copies to concurrent reviewer and two copies to Architect. In the case of color charts and other non-reproducible information, submit four originals to concurrent reviewer and two original to Architect.
 b. Concurrent Submittals to Owner: Submit one (1) copy.
 c. Copy Owner with any transmittals for Product data sent to Architect or Consultants.

2.3 SHOP DRAWINGS:

A. Shop Drawings:

1. Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
2. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Dimensions.
 b. Identification of products.
 c. Fabrication and installation drawings.
 d. Roughing-in and setting diagrams.
 e. Wiring diagrams showing field-installed wiring, including power, signal, and control wiring.
 f. Shopwork manufacturing instructions.
 g. Templates and patterns.
 h. Schedules.
 i. Design calculations.
 j. Compliance with specified standards.
 k. Notation of coordination requirements.
 l. Notation of dimensions established by field measurement.
 m. Relationship to adjoining construction clearly indicated.
 n. Seal and signature of professional engineer if specified.
 o. Wiring Diagrams: Differentiate between manufacturer-installed and field-installed wiring.
3. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop
Drawings on sheets at least 8-1/2 by 11 inches but no larger than 36 by 48 inches.

4. Number of Copies: Submit one original (Contractor’s option of bond print or correctable translucent reproducible print) and three additional copies. One original and one copy will be returned. Reproduction for distribution to subcontractors, manufacturers, fabricators and suppliers is the responsibility of the Contractor.
 a. Concurrent Submittals: Submit one original and three copies to concurrent reviewer and two copies to Architect.
 b. Concurrent Submittals to Owner: Submit one (1) copy to Owner.
 c. Copy Owner with any transmittals for Product data sent to Architect or Consultants.

5. Special Types of Shop Drawings:
 a. Sleeve and Opening Drawings: Comply with requirements set forth in the General Conditions.
 1) Comply with shop drawing requirements for submittal and review as specified in this Section.
 b. Roughing Drawings: Furnish manufacturers certified roughing drawings, indicating accurate locations and sizes of all service utility connections, for machinery and equipment requiring such connections. Submit roughing drawings together with shop drawings for respective machinery and equipment.

6. Mechanical/Electrical Shop Drawing Minimum Requirements: Shop Drawings prepared by mechanical specialty trades shall comply with the following minimum requirements:
 a. The accurate dimensions locate all horizontal ducts from column centerline.
 Locate all offsets, transitions, elbows, fire dampers, registers, grilles and diffusers.
 b. All components shall be located to avoid recessed lighting, piping, conduits, cable trays and other in-plenum assemblies and where required shall be located so as to provide access to the component through removable ceiling material panels or access doors.
 c. Vertical riser ducts shall be located and dimensioned from column centerlines in two (2) directions. Each vertical duct riser shall be shown in its total length when concealed inside of a shaft.
 d. Each horizontal duct run shall be drawn to scale and size (width and depth noted) and an ELEVATION (bottom of duct) be clearly noted. This elevation shall clear all beams in the floor above and the ceiling construction below.
 e. Sheet metal shop drawings shall be made using not less than ¼" scale per foot; increase scale as required in congested areas or as directed by the Contractor.

7. All piping, including fire protection, storm, sanitary, domestic, heating and cooling systems.
 a. Give location of lines from column centerlines, indicate size, indicate centerline ELEVATION of piping and indicate drainage pitch as required.
 b. Where a piping line is indicated locate centerline ELEVATION and pitch at intervals not to exceed twenty (20) feet.
 c. Priority status shall be accorded preparation of dimensioned piping drawings for all piping below slabs-on-grade. Show all line pitches, critical inverts, in-slab fixtures as drains, floor sinks, troughs, cleanouts, etc. and outfall tie-in to site plumbing. Coordinate under slab piping with arrangement(s) of equipment furnished by others where applicable.

8. Electrical Trade:
 a. Plan layouts, not less than ¼" scale, of transformer vaults, main electrical rooms, satellite electrical and/or communications closets, emergency generator spaces showing equipment to scale and locations thereof.
 b. Main feeder distribution routing, horizontal and vertical sweep transitions to scale, of conduit over 1" showing ceiling plenum to scale.

9. Coordination:
 a. Coordination of the work of the several trades and the fitting and routing of the systems within concealed areas to avoid conflicts is the responsibility of the contractor(s). The Architect reserves the right to request coordinated drawings of
congested areas showing all systems in plan and section to appropriate scale to insure the proper fitting of the work. The Contractor shall comply if so requested by the Architect.

b. Provide coordinated drawings of all main mechanical, electrical, communications, and other rooms listed below showing equipment required by all trades including structure, piping, hanger assemblies, HVAC ductwork, conduit, electrical devices, fire alarm devices, control centers, pipe grids, acoustic enclosures, other devices. Drawings dimensioned in both plan and section(s); not less than 3/8"=1'-0" scale.

2.4 COORDINATION DRAWINGS

A. Prepare and submit Coordination Drawings where close and careful coordination is required for installation of products and materials fabricated off-site by separate entities, and where limited space availability necessitates maximum utilization of space for efficient installation of different components. See paragraph 2.3.9 above.

1. Show the interrelationship of components shown on separate Shop Drawings.
2. Indicate required installation sequences.
3. Refer to Division-15 and Division-16 "General Provisions" Sections for specific Composite Drawing requirements for mechanical and electrical installations.

B. Role of Expediter: Contractor shall be responsible for expediting the preparation of the Coordination Drawings. Actual preparation of the drawings is described below. Contractor shall meet with subcontractors to develop a format for the Coordination Drawings (e.g. CAD, pin-register drafting, conventional drafting on Mylar using multiple pencil colors, etc.) such that reproductions obtained from the final Coordination Drawings can distinguish between the work of the various trades. Contractor shall resolve all conflicts arising in the coordination process.

C. Preparation Responsibility: Preparation of Coordination Drawings is the responsibility of the Contractor and all subcontractors principally involved. Production of the drawings shall proceed as follows:

1. HVAC subcontractor shall initiate the drawings by indicating his work, drawn at a scale of 3/8" per foot, showing dimensions, layouts, elevations and sections, all in relation to building construction (all steel structure, floor / roof slabs, ceilings, beams and columns).
2. Where applicable, the GWB subcontractor shall indicate the layout of all acoustic ceiling construction extent including all hanger devices and locations. AC ceiling indicated as well.
3. Fire Protection subcontractor shall then indicate the layout, sizes, dimensions and elevations of his work, using the HVAC subcontractor's drawings as a base, with dimensions in reference to fixed building construction.
4. Electrical subcontractor shall add his work to the base drawings begun by HVAC and Fire Protection subcontractors. Indicate locations and dimensions of light fixtures and electrical equipment conduit/cable-tray infrastructure, fire alarm equipment with reference to fixed building construction.
5. Plumbing subcontractor shall then add layouts, sizes and elevations of his work to the drawings of the above-mentioned trades, also dimensioned with reference to building structure.

D. Conflicts arising between the work of several trades shall be resolved between the respective trades, with the assistance of the General Contractor as expediter; and the drawings revised. Final Coordination Drawings shall be submitted by the Contractor to the Architect as required for submittals.
2.5 SAMPLES:

A. Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.

1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
2. Identification: Attach label on unexposed side of Samples that includes the following:
 a. Generic description of Sample.
 b. Product name and name of manufacturer.
 c. Sample source.
 d. Number and title of appropriate Specification Section.
3. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
4. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit three full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.
5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 a. Number of Samples: Submit four sets of Samples. Architect will retain one Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a Project Record Sample.
 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.

2.6 INFORMATIONAL SUBMITTALS

A. General: Prepare and submit Informational Submittals required by other Specification Sections.

1. Number of Copies: Submit two copies of each submittal, unless otherwise indicated. Architect will not return copies.
2. Certificates and Certifications: Provide a notarized statement that includes signature of entity responsible for preparing certification. An officer shall sign certificates and certifications or other individual authorized to sign documents on behalf of that entity.
3. Test and Inspection Reports: Comply with requirements specified in Division 1 Section "Quality Requirements."

B. Coordination Drawings: Comply with requirements specified in Division 1 Section
"Coordination."

C. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, names.

D. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification (WPS) and Procedure Qualification Record (PQR) on AWS forms. Include names of firms and personnel certified.

E. Installer Certificates: Prepare written statements on manufacturer’s letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

F. Manufacturer Certificates: Prepare written statements on manufacturer’s letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

G. Product Certificates: Prepare written statements on manufacturer’s letterhead certifying that product complies with requirements in the Contract Documents.

H. Material Certificates: Prepare written statements on manufacturer’s letterhead certifying that material complies with requirements in the Contract Documents.

I. Material Test Reports: Prepare reports written by a qualified testing agency, on testing agency’s standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

J. Product Test Reports: Prepare written reports indicating current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

K. Research/Evaluation Reports: Prepare written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:

1. Name of evaluation organization.
2. Date of evaluation.
3. Time period when report is in effect.
4. Product and manufacturers’ names.
5. Description of product.
6. Test procedures and results.
7. Limitations of use.

L. Schedule of Tests and Inspections: Comply with requirements specified in Division 1 Section "Quality Requirements."

M. Preconstruction Test Reports: Prepare reports written by a qualified testing agency, on testing agency’s standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

N. Compatibility Test Reports: Prepare reports written by a qualified testing agency, on testing
agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

O. Field Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

P. Maintenance Data: Prepare written and graphic instructions and procedures for operation and normal maintenance of products and equipment. Comply with requirements specified in Division 1 Section "Operation and Maintenance Data."

Q. Design Data: Prepare written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

R. Manufacturer's Instructions: Prepare written or published information that documents manufacturer's recommendations, guidelines, and procedures for installing or operating a product or equipment. Include name of product and name, address, and telephone number of manufacturer. Include the following, as applicable:

1. Preparation of substrates.
2. Required substrate tolerances.
3. Sequence of installation or erection.
4. Required installation tolerances.
5. Required adjustments.
6. Recommendations for cleaning and protection.

S. Manufacturer's Field Reports: Prepare written information documenting factory-authorized service representative's tests and inspections. Include the following, as applicable:

1. Name, address, and telephone number of factory-authorized service representative making report.
2. Statement on condition of substrates and their acceptability for installation of product.
3. Statement that products at Project site comply with requirements.
4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
6. Statement whether conditions, products, and installation will affect warranty.
7. Other required items indicated in individual Specification Sections.

T. Insurance Certificates and Bonds: Prepare written information indicating current status of insurance or bonding coverage. Include name of entity covered by insurance or bond, limits of coverage, amounts of deductibles, if any, and term of the coverage.

2.7 DELEGATED DESIGN

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated-Design Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit three copies of a statement, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

2.8 ADMINISTRATIVE SUBMITTALS

A. Contractor’s Construction Schedule: Comply with the General Conditions and other requirements of the Contract Administration Division.

1. If preliminary schedule requires revision after review, submit revised schedule within 5 business days.
2. Submit updated schedule with each Application for Payment.

B. Submittals Schedule: Comply with the General Conditions and other requirements of the Contract Administration Division.

1. Submit updated Submittal Log with each Application for Payment.

C. Application for Payment: Comply with the General Conditions and other requirements of the Contract Administration Division.

D. Schedule of Values: Comply with the General Conditions and other requirements of the Contract Administration Division.

E. Subcontract List: Comply with the General Conditions and other requirements of the Contract Administration Division. Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.
4. Number of Copies: Submit three copies of subcontractor list, unless otherwise indicated. Architect will return two copies.
 a. Mark up and retain one returned copy as a Project Record Document.
5. Submit one (1) copy of initial subcontractor list to Owner within (10) business days after Owner’s Notice to Proceed. No portion of the work shall be started until the Contractor has furnished the Owner with a list showing the sub-contractor and/or material supplier responsible for the portion of the actual work needing to be started. The list will be updated until the list reflects the complete group of all subcontractors, suppliers, vendors, etc. employed to carry out the work.

F. The contractor shall keep one (1) set of drawings on the project at all times which are to be marked “as-built”. During the course of the project, they shall mark these drawings with colored pencils to reflect any changes as well as dimension, the location of all pipe runs,
conduits, traps, footing depths or any other information not already shown on the drawings or differing there from. All buried utilities outside the building shall be located by a metes and bounds survey performed by a licensed surveyor who shall certify as to its accuracy. These marked-up drawings and surveys shall be made available to the contracting officer, the Construction Manager and the Architect/Engineer at any time during the progress of the work upon their request. These shall include the drawings of principal sub-contractors as well. The Owner’s Project Manager as well as the Architect on a monthly basis as a prerequisite to the review of the contractor’s payment applications will review as-built drawings.

2.9 SUBMITTALS FOR PROJECT CLOSE OUT

A. When the following are specified in individual sections, submit them at project closeout:
 1. Project record documents.
 2. Operation and maintenance data
 3. Warranties.
 4. Bonds (if and when required by the Owner).
 5. Other types as indicated.

B. Manufacturers’ Instructions, Product Literature, Certificates, and Reports.
 1. All instructions, literature, certificates, test reports, other technical data and correspondence shall be submitted in four (4) copies. The Owner shall retain Two (2) copies, and the other two (2) returned to the Contractor.

C. Written Certifications
 1. Provide written certifications where required, in the following formats:
 a. Manufacturer’s Written Certifications: Shall be submitted in letter form on the manufacturer’s letterhead, signed by an authorized representative, indicating that all required components and elements of their manufacture are in conformity with the requirements so stated under the individual sections of these Specifications. Technical data, additional support material, or other information may be submitted with the certification letter.
 b. Installer’s Written Certifications: Shall be submitted in letter form on the installer’s company letterhead, signed by a legal authorized company officer, indicating that their respective installation and/or Work are in conformity with the requirements so stated under the individual sections of these Specifications.

D. Submit all of the above items in this Section for the Owner’s benefit during and after project completion.

PART 3 - EXECUTION

3.1 CONTRACTOR’S REVIEW

A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect. The Architect / Consultants will not review submittals that do not bear Contractor’s approval stamp and will return them without action.

B. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor’s approval, and statement certifying that submittal has been reviewed, checked,
3.2 ARCHITECT’S ACTION

A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.

B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or modifications required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action taken, as follows:

1. Final Unrestricted Release: When submittals are marked “No Exceptions Taken” (NET), that part of the Work covered by the submittal may precede provided it complies with requirements of the Contract Documents; final acceptance will depend upon compliance.
2. Final-But-Restricted Release: When submittals are marked “Make Corrections Noted” (MCN), that part of the Work covered by the submittal may precede provided it complies with notations or corrections on the submittal and requirements of the Contract Documents; final acceptance will depend on that compliance.
3. Returned for Resubmittal: When submittal is marked “Amend and Resubmit” (AR), do not proceed with that part of the Work covered by the submittal, including purchasing, fabrication, delivery, or other activity. Revise or prepare a new submittal in accordance with the notations; resubmit without delay. Repeat if necessary to obtain a different action mark.
 a. Do not permit submittals marked “Amend and Resubmit” to be used at the Project site, or elsewhere where Work is in progress.
4. Disapproved for Non-Compliance: When submittal is marked “Rejected - See Remarks” (R), Architect’s explanation for rejection will be included. Do not proceed with the work. Prepare a completely new submission.
5. Other Action: Where a submittal is primarily for information or record purposes, special processing or other activity, the submittal will be returned, marked “Action Not Required”.

C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

D. Partial submittals are not acceptable, will be considered nonresponsive, and will be returned without review.

E. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

F. Architect's Review: Review of shop and setting drawings, roughing drawings, sleeve and opening drawings, product data and samples by Architect will be a general review for conformance with design concept and compliance with information given in contact documents only, and shall not relieve Contractor of responsibility for accuracy of such submissions, nor for proper fitting, construction of work, or for furnishings of materials or work required by the contract and not indicated on submissions. Field dimensions, fabrication details, and job fitting are entirely Contractor's responsibility. Review shall not be construed as approving departures from contract requirements. Any proposed deviations from contract requirements, together with Contractor's explanations thereof, shall be stated in the letter of transmittal. Approval of a specific item shall not indicate approval of an entire assembly of which the item is a component. Should contractor check and certify submissions which indicate changes or deviations from the contract documents, and such changes are found acceptable to Architect, any and all additional costs resulting therefrom, including any cost for changes required to adjacent work or the work of other trades shall be the sole responsibility of Contractor.
RELEASE AGREEMENT – DIGITAL INFORMATION – SAMPLE

Architects and sub-consultants have prepared design documents for the project identified as:

These design documents are instruments of the Architect’s and sub-consultants’ service and they retain all rights to such work. The design documents requested have been issued in hard copy form, which is the basis of a contract with the project Owner.

The undersigned has requested copies of these design documents in digital format.

Architect provides the digital files under the following understandings and conditions:

1. The digital files provided are not the contract documents. The digital files provided may differ from the contract documents and have not been verified against the actual (hard-copy) contract documents.
2. The digital files can deteriorate undetected or be altered without the knowledge of Architect. The use of the digital information is wholly at the risk of the undersigned.
3. Architect is under no obligation to provide any software, hardware, any supplemental files, linked data or operational support required to read and/or manipulate the digital files.
4. Architect is under no obligation to correct, modify, update or to notify the undersigned of the need to correct, modify or update the digital files.
5. The undersigned agrees to indemnify, release and hold Architect and their consultants and the Owner harmless from any responsibility or obligation as to the accuracy or completeness of the digital information and further waives any claim it may have for compensation for additional work, delay costs, losses, consequential damages, and expenses including but not limited to attorney fees resulting from the undersigned relying upon or utilizing the digital information.
6. The digital files are provided for the exclusive use of the undersigned personnel only. The information will not be transferable or transmitted by the undersigned for use by others.
7. The above shall constitute an agreement between Architect and the undersigned for providing a service.
8. This agreement does not constitute a waiver of copyright or transfer of ownership of the said information and documents.

This agreement accepted by: By:________________________

Witness:________________________ Title:________________________

Date:________________________

Company:________________________

Address:________________________

END OF SECTION 013300
SECTION 014000 - QUALITY CONTROL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, general conduct of the Work and Special Requirements, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1. In Divisions 1 through 16 Sections:
 a. The term “Architect” shall be synonymous with the term “Professional”.
 b. The terms “Subcontractor”, “Sub-subcontractor”, “Installer”, “Applicator”, “Erector” and similar terms are synonymous with the term “Trade Contractor”.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for quality-control services.

B. Quality-control services include inspections, tests, and related actions, including reports performed by Contractor, by independent agencies, and by governing authorities. They do not include contract enforcement activities performed by Architect.

C. Inspection and testing services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with Contract Document requirements.

D. Requirements of this Section relate to fabrication and installation procedures.

1. Specific quality-control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.

2. Specified inspections, tests, and related actions do not limit Contractor’s quality-control procedures that facilitate compliance with Contract Document requirements.

3. Requirements for Contractor to provide quality-control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.

E. Related Sections: The following Sections contain requirements that relate to this Section:

1. Testing by the Contractor of installed materials and equipment is specified in the Technical Sections (Divisions 2 through 17) of these Specifications.

F. Testing requirements for real property installed equipment (RPIE) to be furnished by the contractor when such testing is required by code, contract or the manufacturer shall be performed in a pre-approved testing laboratory or in the absence of such by the manufacturer or its authorized representative at its place of business. The contractor shall provide a five (5) days' notice to the University and Architect/Engineer through the Project Manager. The University and the Architect/Engineer shall have the right to witness all tests.

G. The contractor will hire and pay for a qualified testing agency.
1.3 RESPONSIBILITIES

A. Contractor Responsibilities: Unless otherwise indicated as the responsibility of another identified entity, Contractor shall provide inspections, tests, and other quality-control services specified elsewhere in the Contract Documents and/or required by authorities having jurisdiction. Costs for these services are included in the Contract Sum.

1. Where individual Sections specifically indicate that certain inspections, tests, and other quality-control services are to be done these services will be the Contractor's responsibility. The Contractor shall employ and pay a qualified independent testing agency to perform quality-control services. Costs for these services are included in the Contract Sum.

B. Retesting: The Contractor is responsible for retesting where results of inspections, tests, or other quality-control services prove unsatisfactory and indicate noncompliance with Contract Document requirements, regardless of whether the original test was Contractor's responsibility.

1. The cost of retesting construction, revised or replaced by the Contractor, is the Contractor's responsibility where required tests performed on original construction indicated noncompliance with Contract Document requirements. The contractor shall pay for all costs including administrative cost incurred by the University.
2. When the University and/or Architect/Engineer require special or additional inspections, testing or approvals due to Contractor's failure to comply with contract specifications, industry standards, good building practices, any applicable code procedures including but not limited to ASIC, ASTM, etc., whether or not testing is required by the contract documents for any individual component, entire system or process, the Contractor will secure the service of such special or additional inspections, testing or approvals. In the event such special or additional inspections and testing reveal a failure of the work to comply with the terms and conditions of the contract, the contractor shall also bear all costs necessary to repair or replace the work as required by the Architect/Engineer.

C. Associated Services: Cooperate with agencies performing required inspections, tests, and similar services, and provide reasonable auxiliary services as requested. Notify the agency sufficiently in advance of operations to permit assignment of personnel. Auxiliary services required include, but are not limited to, the following:

1. Provide access to the Work.
2. Furnish incidental labor and facilities necessary to facilitate inspections and tests.
3. Take adequate quantities of representative samples of materials that require testing or assist the agency in taking samples.
4. Provide facilities for storage and curing of test samples.
5. Deliver samples to testing laboratories.
6. Provide the agency with a preliminary design mix proposed for use for materials mixes that require control by the testing agency.
7. Provide security and protection of samples and test equipment at the Project Site.

D. Duties of the Testing Agency: The independent agency engaged to perform inspections, sampling, and testing of materials and construction specified in individual Sections shall cooperate with the Architect, the Contractor and the Owner in performance of the agency's duties. The testing agency shall provide qualified personnel to perform required inspections and tests.

1. The agency shall notify the Architect, the Contractor, and the Owner promptly of
irregularities or deficiencies observed in the Work during performance of its services.

2. The agency is not authorized to release, revoke, alter, or enlarge requirements of the Contract Documents or approve or accept any portion of the Work.

3. The agency shall not perform any duties of the Contractor.

E. Coordination: Coordinate the sequence of activities to accommodate required services with a minimum of delay. Coordinate activities to avoid the necessity of removing and replacing construction to accommodate inspections and tests.

1. The Contractor is responsible for scheduling times for inspections, tests, taking samples, and similar activities.

1.4 SUBMITTALS

A. Submit a certified written report of each inspection, test, or similar service.

1. Distribute copies of each report to Owner, Architect and Engineer. Distribution of reports shall be made promptly, upon the completion of each test or inspection. A field report will be distributed to the Owner's Project Manager prior to the Inspector leaving the jobsite on any day during which a test or inspection has been done. A final inspection report will be required from the inspection agency to all parties within five (5) business days following the inspection. Test reports will be required within (5) business days following the actual test date.

2. Submit additional copies of each written report directly to the governing authority, when the authority so directs.

3. Report Data: Refer to specification sections of Divisions 2 through 17 for submittal requirements applicable to inspection and test reports. In general, each report shall include:
 a. Date of issue.
 b. Project title and number.
 c. Name, address, and telephone number of testing agency.
 d. Dates and locations of samples and tests or inspections.
 e. Names of individuals making the inspection or test.
 f. Designation of the Work and test method.
 g. Identification of product and Specification Section.
 h. Complete inspection or test data.
 i. Test results and an interpretation of test results.
 j. Ambient conditions at the time of sample taking and testing.
 k. Comments or professional opinion on whether inspected or tested Work complies with Contract Document requirements.
 l. Name and signature of laboratory inspector.
 m. Recommendations on retesting.

4. All submittals of inspections and test reports or requests for approval shall be accompanied by a certification signed by the contractor attesting to his/her knowledge of the submittal, acceptance of its findings and acknowledgement that material tested meets the required standards and certify the report's representation of the facts. Failure to provide the written certification shall be grounds for rejection of the submittal.

1.5 QUALITY ASSURANCE

A. Qualifications for Service Agencies: Engage inspection and testing service agencies, including independent testing laboratories, that are prequalified as complying with the American Council of Independent Laboratories’ “Recommended Requirements for Independent Laboratory Qualification” and that specialize in the types of inspections and tests to be performed.
1. Each independent inspection and testing agency engaged on the Project shall be authorized by authorities having jurisdiction to operate in the state where the Project is located.

2. Each independent inspection and testing agency engaged on the Project shall be pre-qualified by the Division of Building and Construction of the State of New Jersey to perform the types of tests and inspections required.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 REPAIRS AND PROTECTION

A. General: Upon completion of inspection, testing, sample taking and similar services, repair damaged construction and restore substrates and finishes. Comply with Contract Document requirements for Division 1 Section “Cutting and Patching.”

B. Protect construction exposed by or for quality control service activities, and protect repaired construction.

C. Repair and protection is Contractor’s responsibility, regardless of the assignment of responsibility for inspection, testing, or similar services.

END OF SECTION 014000
SECTION 014100 - TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including general conditions, general conduct of the work and special requirements, supplementary conditions, and other Division 1 specification sections, apply to this section. In the event of any conflicts between the requirements of these sections, the more stringent requirement shall apply.

1.2 SECTION INCLUDES

A. Selection and payment.

B. Contractor submittals.

C. Laboratory responsibilities.

D. Laboratory reports.

E. Limits on testing laboratory authority.

F. Contractor responsibilities.

1.3 RELATED SECTIONS

A. General Conditions: Inspections, testing, and approvals required by public authorities.

B. Individual Specification Sections: Inspections and tests required, and standards for testing.

C. Drawings and general provisions of the Contract, including General Conditions, General Conduct of the Work and Special Requirements, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these sections, the more stringent requirement shall apply.

1.4 REFERENCE STANDARDS

B. ASTM C1077 - Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation.

C. ASTM D290 - Recommended Practice for Bituminous Mixing Plant Inspection.

D. ASTM D3740 - Practice for Evaluation of Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction.

1.5 SELECTION AND PAYMENT

A. Contractor shall employ and pay for services of an independent Testing Laboratory, and Balancing Laboratory/Organization, approved by Owner and Architect/Engineer, to perform all specified inspecting and testing.

B. Employment of testing laboratory in NO WAY relieves Contractor of obligation to perform Work in accordance with requirements of Contract Documents.

1.6 QUALITY ASSURANCE

B. Testing Laboratory Qualifications: Shall have been inspected by a nationally recognized inspection agency, acceptable to Owner and Architect/Engineer. Evidence of such inspection and current status shall be provided to Owner and Architect/Engineer. In addition, the approved lab shall document participation in a nationally recognized soils and concrete reference testing program during the twelve (12) months preceding the start of work on this project. Results of reference testing shall indicate an acceptable rating for the laboratory to be considered by the Owner and Architect/Engineer.

C. Laboratory: Authorized to operate in the State in which Project is located.

D. Laboratory Staff: Maintain a full time registered Professional Engineer on staff to review services.

E. Testing Equipment: Shall be calibrated at reasonable intervals with devices of accuracy traceable to either National Bureau of Standards or accepted values of natural physical constants.

1.7 CONTRACTOR SUBMITTALS

A. PRIOR TO START OF WORK, submit testing laboratory name, address, and telephone number, and names of full time registered Engineer and responsible officer.

B. Submit copy of report of laboratory facilities inspection made by Materials Reference Laboratory of National Bureau of Standards during most recent inspection, with memorandum of remedies of any deficiencies reported by the inspection.

1.8 LABORATORY RESPONSIBILITIES

A. Test samples of required items submitted by Contractor.
B. Provide qualified personnel at site. Cooperate with Architect/Engineer and Contractor in performance of services.

C. Perform specified inspecting, sampling, and testing of Products in accordance with specified standards.

D. Ascertain compliance of materials and mixes with requirements of Contract Documents.

E. Promptly notify Architect/Engineer and Contractor of observed irregularities or non-conformance of Work or Products.

F. Perform additional inspection and tests required by Architect/Engineer.

1.9 LABORATORY REPORTS

A. After each inspection and test within five (5) business days, promptly submit three (3) copies of laboratory report to Owner, Architect/Engineer, and to Contractor. Include:
 1. Date issued
 2. Project title and number
 3. Name of inspector
 4. Date and time of sampling or inspection
 5. Identification of product and specifications section
 6. Location in the Project
 7. Type of inspection or test
 8. Date of test
 9. Results of tests

B. When requested by Architect/Engineer, provide interpretation of test results.

1.10 LIMITS ON TESTING LABORATORY AUTHORITY

A. Laboratory MAY NOT release, revoke, alter, or enlarge on requirements of Contract Documents.

B. Laboratory MAY NOT approve or accept any portion of the Work.

C. Laboratory MAY NOT assume any duties of Contractor.

D. Laboratory HAS NO authority to stop the Work.

1.11 CONTRACTOR RESPONSIBILITIES

A. Deliver to laboratory at designated location, adequate samples of materials proposed to be used, which require testing.

B. Cooperate with laboratory personnel, and provide access to the Work and to manufacturers' facilities.

C. Provide incidental labor and facilities:
 1. to provide access to Work to be tested,
 2. to obtain and handle samples at the site or at source of Products to be tested,
3. to facilitate tests and inspections,
4. to provide storage and curing of test samples.

D. Notify Architect/Engineer, Owner and laboratory 24 hours prior to expected time for operations requiring inspecting and testing services.

PART 2—PRODUCTS (NOT USED)

PART 3—EXECUTION (NOT USED)

END OF SECTION 014100
PART 1 –GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, General Conduct of the Work and Special Requirements, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 DEFINITIONS

A. General: Basic contract definitions are included in the Conditions of the Contract.

B. "Indicated": The term "indicated" refers to graphic representations, notes, or schedules on the Drawings; or to other paragraphs or schedules in the Specifications and similar requirements in the Contract Documents. Terms such as "shown," "noted," "scheduled," and "specified" are used to help the user locate the reference. Location is not limited.

C. "Directed": Terms such as "directed," "requested," "authorized," "selected," "approved," "required," and "permitted" mean directed by the Architect, requested by the Architect, and similar phrases, unless any item associated with these terms will result in a monetary change order to the project. If the items associated with these terms require a change order the Owner must be notified prior to any action being taken.

D. "Approved": The term "approved," when used in conjunction with the Architect's action on the Contractor's submittals, applications, and requests, and the Architect's and Owners duties and responsibilities are limited as specified by the Conditions of the Contract.

E. "Regulations": The term "regulations" includes laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, as well as rules, conversations and agreements within the construction industry that control performance of the Work.

F. "Furnish": The term "furnish" means to supply and deliver to the Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

G. "Install": The term "install" describes operations at the Project site including the actual unloading, temporary storage, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.

H. "Provide": The term "provide" means to furnish and install, complete and ready for the intended use.

I. "Installer": An installer is the Contractor or another entity engaged by the Contractor, either as an employee, subcontractor, or contractor of lower tier, to perform a particular construction activity, including installation, erection, application, or similar operations. Installers are
required to be experienced in the operations they are engaged to perform.

1. The term "experienced," when used with the term "installer," means having successfully completed a minimum of five previous projects similar in size and scope to this Project; being familiar with the special requirements indicated; and having complied with requirements of authorities having jurisdiction.

2. Trades: Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespersons of the corresponding generic name. However, work resulting from any construction activity performed by a "Trade" must meet all quality standards acceptable to the Architect and Owner.

J. "Project site" is the space available to the Contractor for performing construction activities, either exclusively or in conjunction with others performing other work as part of the Project. The extent of the Project site is shown on the Drawings and may or may not be identical with the description of the land on which the Project is to be built.

K. "Testing Agencies": A testing agency is an independent entity engaged to perform specific inspections or tests, either at the Project site or elsewhere, and to report on and, if required, to interpret results of those inspections or tests.

L. If Requested: If requested by the Owner.

M. Where: Where or when practicable in the judgment of the Owner.

N. Satisfactory: Acceptable in the judgment of the Owner.

O. As Required: As required by the Architect, or as field conditions dictate.

P. Replace: To remove an existing product or service, and furnish and install an indicated product in its place.

Q. Specifications: The total and complete specifications of this Project as identified by the Architect, and the Architects consultants through the Architect, including referenced standard specifications, the General Specifications and the Technical Specifications as indexed.

R. System/Assembly: In the context of this Project, where a 'system' or an 'assembly' as indicated in the Specifications and/or Drawings, it shall consist of the sum of all the relevant parts and/or materials specific to the use of the system or assembly indicated; installed complete, in place, and in working order. All said parts and/or materials required for a complete system indicated, shall be supplied and installed as past of the Base Bid Price for a complete, proper, and fully functional installation, whether specifically detailed or not. All materials for the system or assembly shall be installed completely, all necessary connections to other construction shall be provided. Upon completion of this system or assembly, the sum of all the parts that constitute the make-up of this unit, shall function and/or operate properly according to its intended design.

S. Mandatory: Means as required by code, any Building Authority, and any and all governing laws. All mandatory requirements for construction shall be included in the Base Bid Price for the Project.

T. Functional: Items(s) installed that are to operate properly or as intended.
U. Typical: A condition, detail, or other item that is common to an identified system, assembly, or any other construction condition where the essential characteristics are the same.

1.3 SPECIFICATION FORMAT AND CONTENT EXPLANATION

A. Specification Format: These Specifications are organized into Divisions and Sections based on the 16-division format and CSI/ICSC's "MasterFormat" numbering system.

B. Specification Content: These Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows.

1. Abbreviated Language: Language used in the Specifications and other Contract Documents is abbreviated. Words and meanings shall be interpreted as appropriate. Words implied, but not stated, shall be interpolated, as the sense requires. Singular words shall be interpreted as plural and plural words interpreted as singular where applicable as the context of the Contract Documents indicates.
 a. The Technical Specifications are of the abbreviated type and include incomplete sentences. Omissions of words or phrases such as "the Contractor shall"; "in conformance with"; "shall be"; "as noted on the Drawings"; "according to the Plans"; "a" "an"; "the"; and "all" are intentional. Omitted words and phrases shall be supplied by inference in the same manner, as they are when a "note" occurs on the Drawings. Works "shall be" "shall have", and "shall" will be supplied by inference where a colon (:) is used within sentences or phrases.

2. Imperative mood and streamlined language are generally used in the Specifications. Requirements expressed in the imperative mood are to be performed by the Contractor. At certain locations in the Section Text, subjective language is used for clarity to describe responsibilities that must be fulfilled indirectly by the Contractor or by others when so noted.
 a. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 b. Abbreviated references to trade associations, technical societies, recognized authorities and other institutions are included in the contract documents. Any abbreviation or organization not recognized by the Contractors shall be requested from the Architect for interpretation. Failure to request and receive an interpretation shall not relieve the Contractor from performing and/or supplying materials or workmanship in compliance with specified references to the satisfaction of the Architect or Owner.

C. References: References to known standard specifications shall mean and intend the latest edition of such specifications adopted and published as of the date of the invitation to bid.

D. Divisions: Divisions of the specifications into sections is done for the convenience of reference and is not intended to control the Contractor in dividing the Work among subcontractors or to limit the scope of work performed by any trade under any section.

1.4 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a past of the Contract Documents by reference.
B. Publication Dates: Comply with standards in effect as of the date of the Contract Documents.

C. Conflicting Requirements: Where compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer uncertainties and requirements that are different, but apparently equal, to the Architect for a decision before proceeding.

1. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of the requirements. Refer uncertainties to the Architect for a decision before proceeding.

D. Copies of Standards: Each entity engaged in construction on the Project must be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, the Contractor shall obtain copies directly from the publication source and make them available on request.

E. Abbreviations and Names: Trade association names and titles of general standards are frequently abbreviated. Where abbreviations and acronyms are used in the Specifications or other Contract Documents, they mean the recognized name of the trade association, standards-producing organization, authorities having jurisdiction, or other entity applicable to the context of the text provision. Refer to Gale Research's "Encyclopedia of Associations" or Columbia Books' "National Trade & Professional Associations of the U.S.," which are available in most libraries.

1.5 GOVERNING REGULATIONS AND AUTHORITIES

A. Copies of Regulations: Obtain copies of the following regulations and retain at the Project site to be available for reference by parties who have a reasonable need:

1. Any and all Federal, State or Local regulations required by the Agency having jurisdiction to be retained or posted at the project site.

1.6 SUBMITTALS

A. Permits, Licenses, and Certificates: For the Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.7 DRAWINGS

A. The Contractor shall provide all quantities, items, articles, materials, operations, or methods listed, mentioned, implied, scheduled, or specified, on the Drawings, including all labor, materials, equipment, and incidentals required for their completion.

B. Intent of the Drawings:
1. As with any plan, the Contractor shall be responsible for verifying all field conditions, whether or not noted in the plans prior to construction. Any discrepancies shall be resolved with the Owner prior to construction. The start of construction will not be delayed due to the Contractors need to verify all field conditions. Verification of items must be scheduled by the Contractor so as not to impede the progress of the work. The Contractor shall be responsible for correcting damage resulting from Contractor’s failure to verify field conditions. Architect/Engineer and Owner liability for accuracy of survey information.

2. The implied intent of the Drawings, includes the overall layout of the Project, inclusive of site structures, site improvements, location of all items required during construction, the extent of construction and the extent of the materials.

3. All such Drawings and Specifications constitute the Project as a whole, and are as a result, directly related to one another. The Drawings and Specifications are not divided into, or are intended to be divided into separate entities according to building trades or local practice. It is the responsibility of the Contractor to disseminate all information represented on the Drawings and Specifications so that all trades and sub-trades will have complete and thorough knowledge of the Project intent. No requests for Change Orders, time extensions, or other considerations will be accepted if the Contractor fails to properly coordinate information to the various trades/sub-trades.

PART 2 - PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)

END OF SECTION 014200
SECTION 015000 – CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions, Supplementary Conditions, and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes requirements for construction facilities and temporary controls, including temporary utilities, support facilities, and security and protection. Temporary utilities include, but are not limited to, the following:

1. Temporary water service and distribution.
2. Temporary electric power and light.
3. Temporary heat.
4. Telephone service.
5. Sanitary facilities, including drinking water.
6. Storm and sanitary sewer.

B. Support facilities include, but are not limited to, the following:

1. Field offices and storage sheds.
2. Temporary roads, paving and truck wash-down station.
3. Dewatering facilities and drains.
4. Temporary enclosures.
5. Hoists.
6. Temporary project identification signs and bulletin boards.
7. Waste disposal services.
8. Rodent and pest control.
9. Construction aids and miscellaneous services and facilities.
10. Security and protection facilities include, but are not limited to, the following:

C. Security and protection facilities include, but are not limited to, the following:

1. Temporary fire protection.
2. Barricades, warning signs, and lights.
3. Sidewalk bridge or enclosure fence for the site.
4. Environmental protection.

D. The Contractor is responsible for all costs associated with the supply, maintenance or usage of temporary utilities and construction related facilities unless indicated otherwise in this Section.

1.3 QUALITY ASSURANCE

A. Regulations: Comply with industry standards and applicable laws and regulations of
authorities having jurisdiction including, but not limited to, the following:

1. Building code requirements.
2. Health and safety regulations.
3. Utility company regulations.
4. Police, fire department, and rescue squad rules.
5. Environmental protection regulations.

1. Electrical Service: Comply with NEMA, NECA, and UL standards and regulations for temporary electric service. Install service in compliance with NFPA 70 "National Electric Code."

C. Inspections: Arrange for authorities having jurisdiction to inspect and test each temporary utility before use. Obtain required certifications and permits.

1.4 PROJECT CONDITIONS

A. Temporary Utilities: Prepare a schedule indicating dates for implementation and termination of each temporary utility.

B. Conditions of Use: Keep temporary services and facilities clean and neat in appearance. Operate in a safe and efficient manner. Relocate temporary services and facilities as the Work progresses. Do not overload facilities or permit them to interfere with progress. Take necessary fire-prevention measures. Do not allow hazardous, dangerous, or unsanitary conditions, or public nuisances to develop or persist on-site.

C. Provide waste removal services as required to maintain the site in a clean and orderly condition.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Provide new materials. If acceptable to the Owner, the Contractor may use undamaged, previously used materials in serviceable condition. Provide materials suitable for use intended.

B. Paint: Comply with requirements.

1. For job-built temporary offices, shops, sheds, fences, and other exposed lumber and plywood, provide exterior-grade acrylic-latex emulsion over exterior primer.
2. For sign panels and applying graphics, provide exterior-grade alkyd gloss enamel over exterior primer.

C. Tarpaulins: Provide waterproof, fire-resistant, UL-labeled tarpaulins with flame-spread rating of 15 or less. For temporary enclosures, provide translucent, nylon-reinforced, laminated polyethylene or polyvinyl chloride, fire-retardant tarpaulins.

D. Water: Provide potable water approved by local health authorities.
2.2 EQUIPMENT

A. General: Provide new equipment. If acceptable to the Owner, the Contractor may use undamaged, previously used equipment in serviceable condition. Provide equipment suitable for use intended.

B. Water Hoses: Provide 3/4-inch, heavy-duty, abrasion-resistant, flexible rubber hoses 100 feet long, with pressure rating greater than the maximum pressure of the water distribution system. Provide adjustable shutoff nozzles at hose discharge.

C. Electrical Outlets: Provide properly configured, NEMA-polarized outlets to prevent insertion of 110- to 120-Volt plugs into higher voltage outlets. Provide receptacle outlets equipped with ground-fault circuit interrupters, reset button, and pilot light for connection of power tools and equipment.

D. Electrical Power Cords: Provide grounded extension cords. Use hard-service cords where exposed to abrasion and traffic. Provide waterproof connectors to connect separate lengths of electric cords if single lengths will not reach areas where construction activities are in progress. Do not exceed safe length-voltage ratio.

E. Lamps and Light Fixtures: Provide general service incandescent lamps of wattage required for adequate illumination. Provide guard cages or tempered-glass enclosures where exposed to breakage.

F. Fire Extinguishers: Provide hand-carried, portable, UL-rated; Class A fire extinguishers for temporary offices and similar spaces. In other locations, provide hand-carried, portable, UL-rated, Class ABC, dry-chemical extinguishers or a combination of extinguishers of NFPA-recommended classes for the exposures.

1. Comply with NFPA 10 and NFPA 241 for classification, extinguishing agent, and size required by location and class of fire exposure.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Use qualified personnel for installation of temporary facilities. Locate facilities where they will serve the Project adequately and result in minimum interference with performance of the Work and the areas adjacent to the Work area. Relocate and modify facilities as required.

B. Provide each facility ready for use when needed to avoid delay. Maintain and modify as required. Do not remove until facilities are no longer needed.

3.2 TEMPORARY UTILITY INSTALLATION

A. General: Engage the appropriate local utility company to install temporary service or connect to existing service. Where company provides only part of the service, provide the remainder with matching, compatible materials and equipment. Comply with company recommendations.

1. Arrange with company and existing users for a time when service can be interrupted, if necessary, to make connections for temporary services.

2. Provide adequate capacity at each stage of construction. Prior to temporary utility availability, provide trucked-in services.

3. Obtain easements to bring temporary utilities to the site where the Owner's
easements cannot be used for that purpose.

4. Use Charges: Cost or use charges for temporary facilities are not chargeable to the Owner. Neither the Owner will accept cost or use charges as a basis of claims for Change Orders.

5. Install services to cause minimum disruption to area’s adjacent to the work area.

6. Add provisions for work not in Contract but served by temporary facilities, if required.

B. Water Service: Contractor may use existing water service in the area of work.

C. Temporary Electric Power Service: Provide weatherproof, grounded electric power service and distribution system of sufficient size, capacity, and power characteristics during construction period. Include meters, transformers, overload-protected disconnects, automatic ground-fault interrupters, and main distribution switchgear. Cost of temporary electric power usage is the Contractor’s responsibility. Cost shall be included in the bid.

D. Initial temporary service shall be three (3) phase, or single phase. Temporary light and power installations, wiring and miscellaneous electrical hardware must meet the electric code. Electrical characteristics shall be provided to meet all temporary light and power reasonably required as herein and hereinafter specified or as included under the general conditions. The contractor shall pay the cost of running temporary services. All costs shall be included in the bid.

1. Power Distribution System: Install wiring overhead and rise vertically where least exposed to damage. Where permitted, wiring circuits not exceeding 125 Volts, ac 20 Ampere rating, and lighting circuits may be nonmetallic-sheathed cable where overhead and exposed for surveillance.

E. Power outlets shall be fed independently of the temporary lighting system. The extension of service shall include the necessary wiring of sufficient capacity to the location of the well for the operation of the well pump in the event a water well is the source of water supply for the project. Where service of a type other than herein mentioned is required, the contractor requiring it shall pay all costs of such special service.

F. Temporary Lighting: Provide temporary lighting with local switching. Cost of temporary lighting usage is the contractors’ responsibility. Cost shall be included in the bid.

1. The contractor shall provide double sockets at a maximum of thirty feet (30’) on centers in large areas. One (1) socket shall contain a 150-watt lamp and the other socket shall be a grounding type to accept a receptacle plug for small, single-phase loads to be used for short periods of time.

2. Install and operate temporary lighting that will fulfill security and protection requirements without operating the entire system. Provide temporary lighting that will provide adequate illumination for construction operations and traffic conditions.

G. The contractor shall observe the requirements of the Federal Occupational Safety and Health Act (OSHA) of 1970 with regard to temporary light and power.

H. Temporary Heat: Provide temporary heat required by construction activities. Select safe equipment that will not have a harmful effect. Any cost associated with the supply, maintenance and usage of temporary heat will be the responsibility of the contractor. Cost of temporary heat shall be included in the bid.

I. Use of gasoline-burning space heaters, open flame, or salamander heating units is prohibited.
J. Should electricians be required to supervise and maintain equipment required for the provision of heat, the payment for the services of the supervisors and/or maintenance personnel shall be the responsibility of the Contractor. The contractor shall pay the cost of all fuel consumed in the operation of the generating unit for supplying temporary heat.

K. All heating equipment shall be NFPA approved. Heaters shall be approved by a recognized testing laboratory and must be equipped with a positive shut-off safety valve. Notwithstanding the above, all temporary heating equipment will comply with all Federal and State laws and regulations.

L. Temporary Telephones: Contractor shall utilize their own cell phones for service.

M. The contractor may utilize the Owner’s sanitary/wash facilities, drinking water, etc. if these amenities are available. The contractor shall only use these facilities with Owner’s permission. The contractor will be responsible to reimburse the Owner for all Owner provided utilities use by the Contractor. Further, should the contractor elect to utilize Owner provided utilities the contractor will be responsible to repair all damage and replace all damaged items before the project will be considered substantially completed. The Owner will not be required to make final payment to the contractor until such damage is repaired or replaced to its original or better than original condition.

3.3 SUPPORT FACILITIES INSTALLATION

A. Temporary storage sheds are not permitted on the Owner’s property.

B. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities.

1. Where temporary wood or plywood enclosure exceeds 100 sq. ft. in area, use UL-labeled, fire-retardant-treated material for framing and main sheathing.

C. Temporary Lifts and Hoists: Contractor may utilize the existing elevator for bringing materials to the area of work and disposing materials to the area of work provided that:

1. The Contractor provides temporary protection materials, padding, etc. for the elevator cab.
2. The Contractor observes the weight capacity of the existing elevator cab.
3. The Contractor is only permitted to use the existing elevator from the hours of 9:00 p.m. to 6:00 a.m. Monday through Friday.
4. The Contractor notify the Owner of the elevator use three (3) business days prior to use.

D. Project Identification and Temporary Signs: Prepare project identification and other signs of size indicated. Install signs where indicated to inform the public and persons seeking entrance to the Project. Support on posts or framing of preservative-treated wood or steel. Do not permit installation of unauthorized signs.

1. Temporary Signs: Prepare signs to provide directional information to construction personnel and visitors.

E. Collection and Disposal of Waste: Collect waste from construction areas and elsewhere daily. Comply with requirements of NFPA 241 for removal of combustible waste material and debris. Enforce requirements strictly. Do not hold materials more than 7 days during normal weather
or 3 days when the temperature is expected to rise above 80 deg F. Handle hazardous, dangerous, or unsanitary waste materials separately from other waste by containerizing properly. Dispose of material lawfully.

1. Provide containers with lids. Dispose of waste off-site periodically.

F. Individual Project circumstances may require use of other construction aids and miscellaneous facilities, such as walkways, scaffoldings, platforms, swing stages, ramps and bridges, incidental sheeting and shoring, demolition waste chutes, and similar construction aids. Add requirements as necessary to suit Project.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

1. Locate fire extinguishers where convenient and effective for their intended purpose, but not less than one extinguisher on each floor at or near each usable stair-well.
2. Store combustible materials in containers in fire-safe locations.
3. Maintain unobstructed access to fire extinguishers, fire hydrants, temporary fire-protection facilities, stairways, and other access routes for fighting fires. Prohibit smoking in hazardous fire-exposure areas.
4. Provide supervision of welding operations, combustion-type temporary heating units, and similar sources of fire ignition.

B. Barricades, Warning Signs, and Lights: Comply with standards and code requirements for erection of structurally adequate barricades. Paint with appropriate colors, graphics, and warning signs to inform personnel and the public of the hazard being protected against. Where appropriate and needed, provide lighting, including flashing red or amber lights.

C. Security Enclosure and Lockup: Install substantial temporary enclosure of partially completed areas of construction. Provide locking entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security.

1. Storage: Where materials and equipment must be stored, and are of value or attractive for theft, provide a secure lockup. Enforce discipline in connection with the installation and release of material to minimize the opportunity for theft and vandalism.

D. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction in ways and by methods that comply with environmental regulations, and minimize the possibility that air, waterways, and subsoil might be contaminated or polluted or that other undesirable effects might result. Avoid use of tools and equipment that produce harmful noise. Restrict use of noise-making tools and equipment to hours that will minimize complaints from persons or firms near the site.

1. No burning will be permitted on the site.
2. It will be the Contractor's responsibility to control dust by a means acceptable to the Owner. The Contractor shall make due allowance in his bid to cover these non-productive costs.

E. Protection of Utilities:
1. The Contractor shall exercise special care when working near existing utility installations such as lights, ducts, structures, underground trench laid cables, cable markers, pads, water lines, underground oil lines, railroads and other installations, to ensure that no damage is done to them and that the underground wiring to such utilities is not damaged or rooted out, or pipelines broken or punctured.

2. If the Contractor damages any installation, the Contractor shall repair at no cost to the Owner the damaged item to the Owner’s satisfaction. At the Owners discretion, repairs will be done continuously on a 24-hour per day basis until completed. The Contractor shall submit for approval the name of an electrical contractor and a plumbing contractor who shall be available on a 24 hour a day basis to affect any repairs as may be necessary due to Contractor error.

3. The Contractor shall obtain (if available) as-built site underground information prior to beginning excavation to minimize the possibility of interruption or damage to existing facilities. The lack of this information shall not excuse damage to the utilities by the contractor or the requirement to make necessary repairs immediately, the Contractor shall pay for Cost of the repair work.

F. Protection and Restoration of Property and Landscape: The Contractor shall be responsible for the preservation of all public and private property. All land monuments and property markers shall be preserved until the Owner has witnessed and recorded their location.

G. Protection of Existing Trees, Shrubs, and Vegetation to Remain: Contractor shall take all means necessary to protect existing trees, shrubs, and vegetation. Contractor and its forces shall abide by the boundaries set by the Drawings for the protection of root systems of all designated trees, shrubs and vegetation. Protection shall be completely in place prior to the start of construction work in any area. Contractor shall clearly mark all restricted areas as indicated on the Drawings and prevent the use of the area by all personnel and equipment until final cleanup.

H. Project Security:

1. The Contractor shall be responsible for monitoring all personnel requiring access to the work site including his personnel, subcontractor’s personnel, other contractors working in the same construction area, material delivery trucks, authorized visitors to the site, etc.

2. The Contractor shall be held responsible for the security and protection of its own, subcontractors and sub-subcontractors equipment, vehicles, trailers, tools, materials, and all other items necessary for the work under this Contract.

3. The Contractor shall be held responsible for the admission of any unauthorized personnel into his work area.

4. In general, provide security and facilities to protect Work, existing facilities, and the Owner’s operations from unauthorized entry, vandalism or theft.

3.5 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. Limit availability of temporary facilities to essential and intended uses to minimize waste and abuse.

B. Maintenance: Maintain facilities in good operating condition until removal. Protect from damage by freezing temperatures and similar elements.

1. Protection: Prevent water-filled piping from freezing. Maintain markers for underground lines. Protect from damage during excavation operations.

C. Termination and Removal: Unless the Owner requests that it be maintained longer, remove
each temporary facility when the need has ended or no later than Substantial Completion. Complete or, if necessary, restore existing permanent construction that may have been damaged as a result of the use, maintenance or operation of temporary facility for this project. Repair damaged new work, repair or replace, as directed by the Owner, existing work and or conditions, clean ex- posed surfaces, and replace construction that cannot be satisfactorily repaired as a result of the use, maintenance or operation of temporary facilities for the project.

1. Where the area is intended for future landscape development, remove any material, equipment, debris, trash, soil and aggregate fill used as part or in conjunction with the project that do not comply with requirements for fill or subsoil in the area. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks damaged during and as a result of work conducted as part of this project. Replace and/or repair as required and direct by the governing authority and the Owner.

END OF SECTION 015000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:

1. Inspection procedures.
2. Project record document submittal.
3. Operation and maintenance manual submittal.
4. Submittal of warranties.
5. Final cleaning.

B. Closeout requirements for specific construction activities are included in the appropriate Drawings.

1.3 SUBSTANTIAL COMPLETION

A. Substantial Completion: The date of Substantial Completion for the Work, or designated portion thereof, is the date certified by the Architect when the construction is sufficiently complete, in accordance with the Contract Documents, so that the Owner may occupy the project, or the designated portions thereof, for the use for which it was intended PRIOR to the Mandatory Completion Date. Substantial Completion shall be accomplished and the full project and all designated portions thereof, read for use and occupancy by the Owner by the completion milestone deadline listed below. It shall be the responsibility of the Contractor to notify the Architect and Owner in not less than seven (7) calendar days prior to the Substantial Completion Milestone deadline for a "substantial completion" inspection. The University shall issue a Certificate of Substantial Completion (AIA Document G704) at the point in time when the inspection has been fully completed and the appropriate approvals and certificates have been granted by governing authorities and obtained by the Contractor.

IT IS THE INTENT OF THESE SPECIFICATIONS THAT SUBSTANTIAL COMPLETION IS ACHIEVED NO LATER THAN THE DATES AS OUTLINED IN SECTION 011000 “SUMMARY”. THE CONTRACTOR MUST INCLUDE ANY AND ALL COSTS INCLUDING ANY OVERTIME NECESSARY TO ATTAIN SUBSTANTIAL COMPLETION BY THE DEADLINE LISTED IN SECTION 011000 BASED UPON BEING AWARDED THE PROJECT BY THE DATE LISTED IN SECTION 011000.

B. LIQUIDATED DAMAGES ARE PART OF THIS PROJECT. These will be assessed at the following rates:

1. $1000.00 per day for the first thirty (30) days beyond substantial completion.
2. **$1000.00 per day for each day beyond the thirty (30) days beyond substantial completion.**

C. Preliminary Procedures: Before requesting inspection for certification of Substantial Completion, complete the following. List items below that are incomplete in request.

1. In the Application for Payment that coincides with, or first follows, the date Substantial Completion is claimed, show 100 percent completion for the portion of the Work claimed as substantially complete.
 a. Include supporting documentation for completion as indicated in these Contract Documents and a statement showing an accounting of changes to the Contract Sum.
 b. If 100 percent completion cannot be shown, include a list of incomplete items (a project punch list), the value of incomplete construction, reasons the Work is not complete, and a timeline during which the work must be completed.

2. Advise Owner of pending insurance changeover requirements.
3. Submit specific warranties, workmanship bonds, maintenance agreements, final certifications, and similar documents.
4. Obtain and submit releases enabling the Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
5. Prepare and submit Project Record Documents, operation and maintenance manuals, Final Completion construction photographs, damage or settlement surveys, property surveys, and similar final record information.
6. Deliver tools, spare parts, extra materials, and similar items to location designated by Owner. Label with manufacturer's name and model number where applicable.
7. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
8. Complete startup testing of systems and instruction of the Owner's operation and maintenance personnel.
9. Disconnect and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
10. When mechanical, electrical or other equipment is installed, it shall be the responsibility of the contractor to maintain, warrant and operate it for such period of time as required by the contract documents or as necessary for the proper inspecting and testing of the equipment for adequately instructing the University's operating personnel. All costs associated with the maintenance, warranty, operations, inspection and testing of equipment in addition to instructing University personnel shall be borne by the contractor. All tests shall be conducted in the presence of and upon timely notice to the contracting officer, Project Manager and Architect/Engineer prior to acceptance of the equipment.
11. Owner's warranties will start at Final Acceptance of the Project.

D. Pre-final Inspection:

1. When the Contractor has completed all work and is satisfied the Project is in compliance with the Contract Documents, it will notify the Owner and Architect, in writing, that the Project is complete and ready for inspection. The Owner and Architect will arrange for and conduct an inspection of the Project by the Owner, Architect, Engineers and the Contractor. The Owner will be provided with a reasonable time to arrange for and conduct an inspection.

2. The Owner and Architect will document any deficiencies on a written punch list and will arrange a meeting with the Contractor to review the punch list, explain deficient items and designate a time frame in which the punch list must be completed. The Contractor will correct all the deficiencies within the designated time frame and notify the Owner in
writing, when the Project is ready for re-inspection. The Owner will arrange and conduct the re-inspection of the Project to review the corrected items.

3. The formal list of deficiencies found shall not be considered a final list of all deficient items. Any deficiencies found during instructions to the Owner, inspection for Substantial Completion, beneficial occupancy, or inspection for final acceptance, the Contractor will correct all deficient items per the contract documents prior to final acceptance.

E. Substantial Completion:

1. Upon completion of deficient items and instruction to the Owner, the Contractor will arrange for an inspection of the Project with the Owner and the Architect. This inspection may result in a list of additional items to complete after occupancy, but before final payment and/or may require additional correction prior to occupancy by the Owner.

2. Upon formal notice from the Owner, the Contractor shall then arrange for the submission of all outstanding record documents, including: maintenance manuals, guarantees, warranties, maintenance contracts, and any additional instructions necessary for the operation of the project. The Contractor shall acquaint the Owner with acceptance tests, guarantees, warranties, and maintenance manuals. The Contractor shall also obtain a ‘Certificate of Occupancy’ or similar releases required to permit the Owner’s occupancy of the Project.

3. Should the instruction period find deficiencies, the Owner will notify the Contractor in writing of deficient items.

4. If the inspection confirms that the Project is ‘substantially complete’ and is ‘ready for occupancy’, the Owner through the Architect/Engineer will issue a “Certificate of Substantial Completion’. The Certificate will confirm that the Project can be occupied for its intended use. Attached to the Certificate will be any final punch list to be completed. Prior to issuance of the Certificate, the Contractor shall submit a schedule for completion of remaining deficiencies, approved or amended by the Owner.

5. Inspection Procedures: On receipt of a request for inspection, the Architect will either proceed with inspection or advise the Contractor of unfilled requirements. The Architect will prepare the Certificate of Substantial Completion following inspection or advise the Contractor of construction that must be completed or corrected before the certificate will be issued.
 a. The Architect will repeat inspection when requested and assured that the Work is substantially complete.
 b. Results of the completed inspection will form the basis of requirements for final acceptance.

1.4 BENEFICIAL OCCUPANCY

A. Upon issuance of the ‘Certificate of Substantial Completion’, the Owner may then occupy the Project (or the designated area of the Project).

1.5 FINAL ACCEPTANCE

A. Final Inspection: Upon completion of any remaining deficiencies the Contractor shall notify the Owner in writing, that the Project is complete and ready for final inspection. The Contractor shall arrange for and conduct the final inspection of the Project with the Owner.

B. Final Acceptance: If the final inspection indicates satisfactory completion of the Work, the Owner through the Architect/Engineer will issue a Change Order adjusting to the final quantities. Following acceptance of the final Change Order, receipt of required affidavits, final release of liens, consent of surety for final payment along with all other documentation
required by the contractor documents, the Owner through the Architect will authorize a final Certificate for Payment.

1. Mandatory or Final Completion: Final Completion shall be accomplished and the full project, and all designated portions thereof, completed and ready for use without any further work required within the time frame identified for each phase of work from the date of issuance and as listed on the Certificate of Substantial Completion by the Architect.

2. The guarantee period for all materials, equipment and workmanship shall start on the date of ‘Final Acceptance’ unless otherwise noted on the Certificate.

C. Preliminary Procedures: Before requesting final inspection for certification of final acceptance and final payment, complete the following. List exceptions in the request.

1. Submit the final payment request with releases and supporting documentation not previously submitted and accepted. Include insurance certificates for products and completed operations where required.
2. Submit an updated final statement, accounting for final additional changes to the Contract Sum.
3. Submit a certified copy of the Architect’s final inspection list of items to be completed or corrected, endorsed and dated by the Architect. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance and shall be endorsed and dated by the Architect.
4. Submit final meter readings for utilities, a measured record of stored fuel, and similar data as of the date of Substantial Completion or when the Owner took possession of and assumed responsibility for corresponding elements of the Work.
5. Submit consent of surety to final payment.
6. Submit a final liquidated damages settlement statement.
7. Submit evidence of final, continuing insurance coverage complying with insurance requirements.

D. Re-inspection Procedure: The Architect will re-inspect the Work upon receipt of notice that the Work, including inspection list items from earlier inspections, has been completed, except for items whose completion is delayed under circumstances acceptable to the Owner.

1. Upon completion of re-inspection, the Architect will prepare a certificate of final acceptance. If the Work is incomplete, the Architect will advise the Contractor of Work that is incomplete or of obligations that have not been fulfilled but are required for final acceptance.
2. If necessary, re-inspection will be repeated.
3. Should the Project require inspections beyond the inspections noted above, i.e. a pre-final and a final inspection only the Owner will reduce from the Contractor’s final payment those monies necessary to provide for the cost of the additional inspections. The reduction shall not be considered as a part of any “Liquidated Damages” for failure to complete within the specified Contract Time. The reduction shall not be considered as a penalty to the Contractor; but shall be for the actual cost of monies required for the reimbursement of fees for the Architect, Engineers, Owner and any other specialists necessary for obtaining final approval of the Work.

1.6 EXCESSIVE DEFICIENCIES

A. During any inspection for Project completion, if it is determined by the Owner, that the Contractor has not sufficiently completed the Work in compliance with the Contract Documents, the Owner may declare that the Project is not sufficiently complete to continue the inspection of the Work. Within three (3) working days of this declaration, the Owner will
issue in writing, a list of excessive deficiencies found. Upon receipt of the Owners notice of excessive deficiencies the Contractor will have ten (10) working days to remove such deficiencies. If such deficiencies have not been corrected in the time frame herein specified the Owner can at its’ option complete the Work. Any costs incurred by the Owner as a result of its’ assuming the responsibilities of the Contractor in this regard will be deducted from any monies remaining to be paid to the Contractor. Should the costs associated with the Owner having to assume responsibility for the work to correct excessive deficiencies exceed the amount of funds remaining to be paid the Contractor shall be liable to the Owner for the difference.

1.7 RECORD DOCUMENT SUBMITTALS

A. General: Do not use record documents for construction purposes. Protect record documents from deterioration and loss in a secure, fire-resistant location. Provide access to record documents for the Architect's reference during normal working hours.

1. All of the record documentation listed herein shall be provided by the Contractor in hard copy and digitally. Digital copies shall be provided by the Contractor in PDF format, and issued to the Owner via CD. Hard copy shall be provided by the Contractor in an 8-1/2” x 11” binder.

B. Record Drawings: Maintain a clean, undamaged set of blue or black line white-prints of Contract Drawings and Shop Drawings. Mark the set to show the actual installation where the installation varies from the Work as originally shown. Mark which drawing is most capable of showing conditions fully and accurately. Where Shop Drawings are used, record a cross-reference at the corresponding location on the Contract Drawings. Give particular attention to concealed elements that would be difficult to measure and record at a later date.

1. Mark record sets with red erasable pencil. Use other colors to distinguish between variations in separate categories of the Work.
2. Mark new information that is important to the Owner but was not shown on Contract Drawings or Shop Drawings.
3. Note related change-order numbers where applicable.
4. Organize record drawing sheets into manageable sets. Bind sets with durable-paper cover sheets; print suitable titles, dates, and other identification on the cover of each set.

C. Record Specifications: Maintain one complete copy of the Project Manual, including addenda. Include with the Project Manual one copy of other written construction documents, such as Change Orders and modifications issued in printed form during construction.

1. Mark these documents to show substantial variations in actual Work performed in comparison with the text of the Specifications and modifications.
2. Give particular attention to substitutions and selection of options and information on concealed construction that cannot otherwise be readily discerned later by direct observation.
3. Note related record drawing information and Product Data.
4. Upon completion of the Work, submit record Specifications to the Architect for the Owner's records.

D. Record Product Data: Maintain one copy of each Product Data submittal. Note related Change Orders and markup of record drawings and Specifications.
1. Mark these documents to show significant variations in actual Work performed in comparison with information submitted. Include variations in products delivered to the site and from the manufacturer's installation instructions and recommendations.

2. Give particular attention to concealed products and portions of the Work that cannot otherwise be readily discerned later by direct observation.

3. Upon completion of markup, submit complete set of record Product Data to the Architect for the Owner's records.

E. Record Sample Submitted: Immediately prior to Substantial Completion, the Contractor shall meet with the Architect and the Owner's personnel at the Project Site to determine which Samples are to be transmitted to the Owner for record purposes. Comply with the Owner's instructions regarding delivery to the Owner's Sample storage area.

F. Miscellaneous Record Submittals: Refer to other Specification Sections for requirements of miscellaneous record keeping and submittals in connection with actual performance of the Work. Immediately prior to the date or dates of Substantial Completion, complete miscellaneous records and place in good order. Identify miscellaneous records properly and bind or file, ready for continued use and reference. Submit to the Architect for the Owner's records.

G. Maintenance Manuals: Organize operation and maintenance data into suitable sets of manageable size. Bind properly indexed data in individual, heavy-duty, 2-inch (51-mm), 3-ring, vinyl-covered binders, with pocket folders for folded sheet information. Mark appropriate identification on front and spine of each binder. Include the following types of information:

1. Emergency instructions.
2. Spare parts list.
4. Wiring diagrams.
5. Recommended "turn-around" cycles.
6. Inspection procedures.
7. Shop Drawings and Product Data.
8. Fixture lamping schedule.

H. Roughing Drawings and Operating Manuals: Plumbing, HVAC, electrical and other machinery and mechanical equipment items requiring utility service connections shall have their respective shop drawings accompanied by manufacturer's certified roughing drawings indicating accurate locations and sizes of all service utility connections.

I. Sleeve and Opening Drawings: Prior to installing service utilities or other piping, etc. through structural elements of the building, the contractor shall prepare and submit accurate dimensioned drawings to the Construction Manager for approval of the Architect and/or Structural Engineer for approval indicating the positions and sizes of all sleeves and openings required to accommodate his/her work and installation of his/her piping, equipment, etc. and all with reference to the established dimensional grid of the building. Such drawings must be submitted in sufficient time to allow proper coordination with reinforcing steel shop drawings and proper placing in the field.

J. Control Valve and Circuit Location Charts and Diagrams: The contractor shall prepare a complete set of inked or typewritten control valve and circuit location diagrams, charts, diagrams and lists under frame glass in appropriate designed equipment rooms as directed. The contractor shall also furnish one-line diagrams as well as such color-coding of piping and wiring and identifying charges as specified or required. This information is to be framed under glass and installed where directed. The Contractor shall also provide the University a
second complete set of the control valve and circuit location diagrams, charts, diagrams and lists not under glass.

K. Warranties:

1. For equipment or component parts of equipment put into service during construction with Owner's permission, submit documents within the (10) days after completion of the applicable item of work. Leave the date of beginning of time of warranty until the Date of Final Acceptance of the building and prior to receipt of final payment.

2. Make other submittals within ten (10) days after Date of Substantial Completion, prior to final Application for Payment.

3. For items of Work for which acceptance is delayed beyond the Date of Substantial Completion, submit within (10) days after written acceptance, listing the date of acceptance as the beginning of the warranty period. Final payment will not be approved until the Owner has received all warranties.

4. Warranty periods for all items installed as part of the Work under this Contract will start at 'Final Acceptance' of the entire scope of Work on the Project.

5. Co-execute submittals when required.

6. Warranty Manual: Bind all warranties and bonds in a commercial type 81/2” X 11” three D side ring binder with durable plastic covers.
 a. Cover: Identify each binder with typed or printed title WARRANTIES AND BONDS, with title of Project; name, address and telephone number of General Contractor and equipment suppliers; and name of responsible company principal.
 b. Table of Contents: Neatly typed, in the sequence of the Table of Contents of the Project Manual, with each item identified with the number and title of the specification section in which specified, and the name of the product or work item.
 c. Transmit two (2) copies of the “Warranties Manual” to the University prior to submission of Final Application for Payment.

7. A certificate of Asbestos shall certify that no asbestos or asbestos-containing products are or have been installed as part of this project.

1.8 CLOSEOUT PROCEDURES

A. Operation and Maintenance Instructions: Arrange for each Installer of equipment that requires regular maintenance to meet with the Owner's personnel to provide instruction in proper operation and maintenance. Provide instruction by manufacturer's representatives if installers are not experienced in operation and maintenance procedures. Include a detailed review of the following items:

1. Maintenance manuals.
2. Record documents.
3. Spare parts and materials.
4. Tools.
5. Lubricants.
6. Fuels.
7. Identification systems.
8. Control sequences.
9. Hazards.
10. Cleaning.
11. Warranties and bonds.
12. Maintenance agreements and similar continuing commitments.

B. As part of instruction for operating equipment, demonstrate the following procedures:

1. Startup.
2. Shutdown.
3. Emergency operations.
5. Safety procedures.
7. Effective energy utilization.

C. Allow a minimum of three (3) hours training for all of the Owners personnel who will be involved with the maintenance or operation for each piece of equipment or system that requires any type of maintenance or operation.

D. For equipment, or component parts of equipment put into service during construction and operated by the Owner, submit completed documents within ten (10) days after written acceptance and prior to receipt of final payment.

E. The contractor shall submit the as-built documents to the Owner's Project Manager for review by the Architect/Engineer whether altered or not with a certification as to the accuracy of the information thereon at the time of contract completion and before final payment will be made to the contractor. After acceptance by the Architect/Engineer, the contractor will furnish two (2) sets of all shop and/or erection drawings used for as-built documentation.

1. All as-built drawings as submitted by the contractor shall be labeled "as-built" and dated above the title block. This information shall be checked, edited and certified by the Architect/Engineer who shall then transpose such information from the contractor's as-built drawings to the original tracings and certify that such tracing reflect "as-built" status and deliver said tracings to the University. Where shop drawings have been used by the contractor for as-built documentation the tracing provided shall include cross-reference information, which shall be included in the set of as-built drawings furnished to the University. The Contractor shall be responsible for and shall pay for the cost of erasable transparencies for its as-built drawings.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: The General Conditions require general cleaning during construction. Regular site cleaning is included in Division 1 Section "Construction Facilities and Temporary Controls."

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to the condition expected in a normal, commercial building cleaning and maintenance program. Comply with manufacturer's instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion.
a. Remove labels that are not permanent labels.
b. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other substances that are vision-detracting materials. Replace chipped or broken glass and other damaged transparent materials.
 1) removal of putty stains from glass and mirrors; wash and polish inside and outside;
c. Clean exposed exterior and interior hard-surfaced finishes to a dust-free condition, free of stains, films, and similar foreign substances. Restore reflective surfaces to their original condition. Leave concrete floors broom clean and dust free. Vacuum carpeted surfaces.
 1) removal of spots, paint and soil from resilient, glaze and unglazed masonry and ceramic flooring and wall work;
d. Vacuum as required and advisable and wipe surfaces of mechanical and electrical equipment. Remove excess lubrication and other substances. Clean plumbing fixtures to a sanitary condition. Clean light fixtures and lamps to a mark free condition.
e. Clean the site, including landscape development areas, of rubbish, litter, and other foreign substances. Sweep paved areas broom clean; remove stains, spills, mud, stones and other foreign deposits. Rake grounds that are neither paved nor planted to a smooth, even-textured surface.
 1) restoration of all landscaping, roadway and walkways to pre-existing condition; damage to trees and plantings shall be repaired in the next planting season and such shall be guaranteed for one (1) year from date of repair and/or replanting;
f. removal of marks, undesirable stains, fingerprints, other soil, dust or dirt from painted, decorated or stained woodwork, plaster or plasterboard, metal acoustic tile and equipment surfaces;
g. removal of temporary floor protections; clean, wash or otherwise treat and/or polish all finished floors as directed;
h. clean exterior and interior metal surfaces, including doors and window frames and hardware, of oil stains, dust, dirt, paint and the like; polish where applicable and leave without fingerprints or blemishes;
i. removal of all pollutants of any kind or nature deposited or remaining upon the site or upon the University's property as a result of the construction work on this project;

C. Pest Control: Engage an experienced, licensed exterminator to make a final inspection and rid the Project of rodents, insects, and other pests.

D. Removal of Protection: Remove temporary protection and facilities installed for protection of the Work during construction.

E. Compliance: Comply with regulations of authorities having jurisdiction and safety standards for cleaning. Do not burn waste materials. Do not bury debris or excess materials on the Owner's property. Do not discharge volatile, harmful, or dangerous materials into drainage systems. Remove waste materials from the site and dispose of lawfully.

1. Where extra materials of value remain after completion of associated Work, they become the Owner's property. Dispose of these materials as directed by the Owner.

END OF SECTION 017700
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Maintenance manuals for the care and maintenance of products, materials, and finishes systems and equipment.

B. Related Sections include the following:

1. Division 1 Section "Summary" for coordinating operation and maintenance manuals covering the Work of multiple contracts.
2. Division 1 Section "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
3. Division 1 Section "Closeout Procedures" for submitting operation and maintenance manuals.
4. Division 1 Section "Project Record Documents" for preparing Record Drawings for operation and maintenance manuals.
5. Divisions 2 through 16 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 SUBMITTALS

A. Initial Submittal: Submit two (2) draft copies of each manual at least fifteen (15) calendar days before requesting inspection for Substantial Completion. Include a complete operation and maintenance directory. Owner will return one copy of draft and mark whether general scope and content of manual are acceptable.

1. In lieu of hard copies, Contractor may submit digital copies in PDF format.
B. Final Submittal: Submit two copies of each manual in final form at least fifteen (15) calendar days before final inspection. Architect will return copy with comments within 15 days after final inspection.

1. Submit four (2) sets prior to final inspection, bound in 8½” X 11” binders with durable plastic covers, acceptable to the Owner.
2. In addition, Contractor shall submit digital copy in PDF format.
3. Submit final volumes revised, to the authorized representative of the Owner as required in these Contract Documents.

1.5 COORDINATION

A. Where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Organization: Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 MANUALS, GENERAL

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:
1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name, address, and telephone number of Contractor.
6. Name and address of Architect.
7. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
2. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets. These manuals shall include a complete description of all systems and equipment, diagrams indicating connectors, oiling requirements, types of lubricants to be used and method of operating equipment. Included within the manuals shall be a list of names, addresses and telephone numbers of subcontractors involved in the installation and firms capable of performing services for each mechanical item.
3. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual. Internally subdivide the binders contents with permanent page dividers, logically organized as described below and with tab titling clearly printed under reinforced laminated plastic tabs.
 a. PART 1: Directory, listing names, addresses, contact persons and telephone numbers of Architects, Engineers, Contractors, Subcontractors and suppliers.
 b. PART 2: Maintenance instructions subdivided by MasterSpec Format Sections as listed within these Contract Documents. For each Section identify names, addresses, contact persons and telephone numbers of Subcontractors and suppliers. Identify the following (in addition to the items listed in "G" above):
 1) Significant design criteria
 2) List of equipment.
 3) Parts list for each component.
 4) Maintenance instructions for equipment and systems.
 5) Maintenance instructions for special finishes, including recommended cleaning
methods and materials and special precautions identifying detrimental agents.

4. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

5. Supplementary Text: Prepared on 8-1/2-by-11-inch white bond paper.

6. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:
 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
 8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:
 1. Instructions on stopping.
 2. Shutdown instructions for each type of emergency.
 3. Operating instructions for conditions outside normal operating limits.
 4. Required sequences for electric or electronic systems.
 5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 1. System, subsystem, and equipment descriptions.
 2. Performance and design criteria if Contractor is delegated design responsibility.
 3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUAL

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.

2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard printed maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training videotape, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of
required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts, Extra Materials and Maintenance Materials

1. Provide products, spare parts, maintenance and extra materials in quantities specified in individual specification sections. If there are no quantities specified then provide a minimum of five percent (5%) of:
 a. all interior finish materials (attic stock).
 b. the number of lamps and ballast needed for every light fixture.
 c. the total number of automatic light sensors
 d. the total number of each filter type required for each Mechanical Unit requiring filters.
2. Provide 100% of all spare parts necessary to operate and maintain all equipment and building systems within the design parameters and/or as recommended by the manufacturer or supplier.
3. Deliver to Project Manager and obtain receipt prior to final payment.
4. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Special Tools

1. Provide any “special tools” (one of each type) if required as part of the operation and maintenance of any of the systems herein specified. “Special tools” are devices that are considered unique to a specified system and necessary for maintenance and operation of that system, and not normally part of the maintenance department inventory.

H. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

I. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.

1. Do not use original Project Record Documents as part of operation and maintenance manuals.
2. Comply with requirements of newly prepared Record Drawings in Division 1 Section "Project Record Documents."

G. Comply with Division 1 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017820
SECTION 018200 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. In the event of any conflicts between the requirements of these Sections, the more stringent requirement shall apply.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:

1. Demonstration of operation of systems, subsystems, and equipment.
2. Training in operation and maintenance of systems, subsystems, and equipment.
3. Demonstration and training videotapes.

B. Related Sections include the following, as applicable to this project:

1. Division 1 Section "Allowances" for administrative and procedural requirements for demonstration and training allowances.
2. Division 1 Section "Project Management and Coordination" for requirements for pre-instruction conferences.
3. Divisions 2 through 16 Sections for specific requirements for demonstration and training for products in those Sections.

C. Allowances: Furnish demonstration and training instruction time under the Demonstration and Training Allowance as specified in Division 1 Section "Allowances."

D. Unit Price for Instruction Time: Length of instruction time will be measured by actual time spent performing demonstration and training in required location. No payment will be made for time spent assembling educational materials, setting up, or cleaning up.

1.3 SUBMITTALS

A. Instruction Program: Submit two (2) copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.

1. At completion of training, submit two (2) complete training manual(s) for Owner's use.

B. Qualification Data: For instructors.

C. Attendance Record: For each training module, submit list of participants and length of instruction time.

D. Evaluations: For each participant and for each training module, submit results and
E. Demonstration and Training Videotapes: Submit two (2) copies within seven (7) days of end of each training module.

1. Identification: On each copy, provide an applied label with the following information:
 a. Name of Project.
 b. Name and address of photographer.
 c. Name of Architect.
 d. Name of Contractor.
 e. Date videotape was recorded.
 f. Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.

2. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

1.4 QUALITY ASSURANCE

A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 1 Section "Quality Control Requirements," experienced in operation and maintenance procedures and training.

C. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.

D. Pre-instruction Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." Review methods and procedures related to demonstration and training including, but not limited to, the following:

1. Inspect and discuss locations and other facilities required for instruction.
2. Review and finalize instruction schedule and verify availability of educational materials, instructors' personnel, audiovisual equipment, and facilities needed to avoid delays.
3. Review required content of instruction.
4. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.

1.5 COORDINATION

A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations.

B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data
PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:

1. Motorized doors, including overhead coiling doors, overhead coiling grilles, and automatic entrance doors.
2. Equipment, including stage equipment, projection screens, loading dock equipment, waste compactors, food-service equipment, residential appliances and laboratory fume hoods, etc.
3. Fire-protection systems, including fire alarm, fire pumps and fire-extinguishing systems.
4. Intrusion detection systems.
5. Conveying systems, including elevators, wheelchair lifts, escalators and cranes.
6. Medical equipment, including medical gas equipment and piping.
7. Laboratory equipment, including laboratory air and vacuum equipment and piping.
8. Heat generation, including boilers, feed water equipment, pumps, steam distribution piping and water distribution piping.
9. Refrigeration systems, including chillers, cooling towers, condensers, pumps and distribution piping.
10. HVAC systems, including air-handling equipment, air distribution systems and terminal equipment and devices.
11. HVAC instrumentation and controls.
12. Electrical service and distribution, including transformers, switchboards, panel boards, uninterruptible power supplies and motor controls.
13. Packaged engine generators, including transfer switches.
14. Lighting equipment and controls.
15. Communication systems, including intercommunication, surveillance, clocks and programming, voice and data and television equipment.

B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.
2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project Record Documents.
 e. Identification systems.
f. Warranties and bonds.
g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
 l. Required sequences for electric or electronic systems.
 m. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Alignments.
 b. Checking adjustments.
 c. Noise and vibration adjustments.
 d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
 e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

 A. Assemble educational materials necessary for instruction, including documentation and training.
Assemble training modules into a combined training manual.

B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

1. Architect will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
2. Owner will furnish an instructor to describe Owner's operational philosophy.
3. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

1. Schedule training with Owner with at least seven (7) calendar days' advance notice.

D. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral and a demonstration performance-based test.

E. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEOTAPES

A. General: Engage a qualified commercial photographer to record demonstration and training videotapes. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.

1. At beginning of each training module, record each chart containing learning objective and lesson outline.

B. Videotape Format: Provide high-quality VHS color videotape in full-size cassettes.

C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.

D. Narration: Describe scenes on videotape by dubbing audio narration off-site after videotape is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

E. Transcript: Provide a typewritten transcript of the narration. Display images and running time captured from videotape opposite the corresponding narration segment.

END OF SECTION 018200
SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Demolition and removal of selected portions of building or structure.
2. Demolition and removal of selected site elements.
3. Salvage of existing items to be reused or recycled.

1.2 DEFINITIONS

A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.

B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.

C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.

D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.3 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For refrigerant recovery technician.

B. Predemolition Photographs or Video: Submit before Work begins.

C. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician.

1.5 CLOSEOUT SUBMITTALS

A. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.
1.6 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.7 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

1. Before selective demolition, Owner will remove the following items:
 a. Rooms 120, 124, 125 and 127 – All furniture and equipment
 b. Room 126 – some furniture (remainder to be removed by General Contractor.
 c. Room 237 – some furniture, the rest to remain.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

1. Hazardous materials will be removed by Owner before start of the Work.
2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

E. Hazardous Materials: Hazardous materials are present in buildings and structures to be selectively demolished. A report on the presence of hazardous materials is on file for review and use. Examine report to become aware of locations where hazardous materials are present.

1. Hazardous material remediation is specified elsewhere in the Contract Documents.
2. Do not disturb hazardous materials or items suspected of containing hazardous materials except under procedures specified elsewhere in the Contract Documents.

F. Storage or sale of removed items or materials on-site is not permitted.

G. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

1. Maintain fire-protection facilities in service during selective demolition operations.

1.8 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

C. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

D. Contractor is responsible for employing a structural engineer registered in New Jersey to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

E. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs.
 1. Comply with requirements specified in Section 013233 "Photographic Documentation."

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 1. Comply with requirements for existing services/systems interruptions specified in Section 011000 "Summary."

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 2. Arrange to shut off indicated utilities with utility companies.
3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.

4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.

C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 PREPARATION

A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Comply with requirements for access and protection specified in Section 015000 "Temporary Facilities and Controls."

B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use
3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
5. Maintain adequate ventilation when using cutting torches.
6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
7. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
8. Dispose of demolished items and materials promptly.

B. Removed and Salvaged Items:

1. Clean salvaged items.
2. Pack or crate items after cleaning. Identify contents of containers.
3. Store items in a secure area until delivery to Owner.
4. Transport items to Owner's storage area on-site.
5. Protect items from damage during transport and storage.

C. Removed and Reinstalled Items:

1. Clean and repair items to functional condition adequate for intended reuse.
2. Pack or crate items after cleaning and repairing. Identify contents of containers.
3. Protect items from damage during transport and storage.
4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in small sections. Using power-driven saw, cut concrete to a depth of at least 3/4 inch at junctures with construction to remain. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete. Neatly trim openings to dimensions indicated.

B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.

C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and
B. remove

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
3. Transport removed materials through building in enclosed containers.

B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119
SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Rooftop equipment bases and support curbs.
2. Wood blocking, cants, and nailers.
3. Plywood backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1.3 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For the following, from ICC-ES:

1. Preservative-treated wood.
2. Fire-retardant-treated wood.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Certified Wood: Lumber and plywood shall be produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship."

B. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. Provide dressed lumber, S4S, unless otherwise indicated.

C. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.
2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC3b for exterior construction not in contact with the ground.

 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:

 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, and similar concealed members in contact with masonry or concrete.
 3. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

 1. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.
 2. Design Value Adjustment Factors: Treated lumber shall be tested according ASTM D 5664, and design value adjustment factors shall be calculated according to ASTM D 6841.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent.

C. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction.

D. Application: Treat items indicated on Drawings, and the following:

 1. Concealed blocking.
 2. Plywood backing panels.

2.4 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

C. Screws for Fastening to Metal Framing: ASTM C 1002, length as recommended by screw manufacturer for material being fastened.

2.5 MISCELLANEOUS MATERIALS

A. Flexible Flashing: Self-adhesive butyl rubber compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry to other construction; scribe and cope as needed for accurate fit.

B. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

C. Framing Standard: Comply with AF&PA’s WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

D. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels. Install fire-retardant treated plywood backing panels with classification marking of testing agency exposed to view.

E. Do not splice structural members between supports unless otherwise indicated.

F. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

G. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:

1. NES NER-272 for power-driven fasteners.
3. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.
3.2 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061053
PART 1 – GENERAL

1.1 SECTION INCLUDES

A. Sprayed cellulose thermal insulation.
B. Sprayed cellulose acoustical insulation.

1.2 RELATED ITEMS

A. Clips, hangers, supports, sleeves and other attachments to spray bases are to be placed by other trades prior to the application of sprayed insulation.
B. Ducts, piping, conduit or other suspended equipment shall not be positioned until after the application of sprayed insulation.
C. Roof penetrations to be installed prior to application.

1.3 QUALITY ASSURANCE

A. Manufacturer must have a current Underwriters Laboratories (UL) Code Evaluation Report.
B. Manufacturer must be in compliance with the 2009 and 2012 International Building Code.
C. Manufacturer must be ISO 9001:2008 Certified.
D. Applicator: Licensed by manufacturer.
E. Manufacturer must subscribe to independent laboratory follow-up inspection services of Underwriters Laboratories and Factory Mutual. Each bag shall be labeled accordingly.
F. Mock-up: Apply a 100 square foot representative sample to be reviewed by the Architect and/or Owner prior to proceeding.

1.4 SUBMITTALS

A. Submit product data that the product meets or exceeds the following specified requirements.
 1. Bond strength shall be greater than 100 psf per ASTM E 736.
 2. Product shall be Class 1 Class A per ASTM E 84/ UL 723.
 3. Non-corrosive per ASTM C 739.
 5. R-Value to be 3.75 per inch per ASTM C518.
 7. Meet ASTM C 1149

B. Manufacturer's written certification that product contains no asbestos, fiberglass or other man-made mineral fibers.
D. Minimum Fiber Recycled Content to be 75%.
E. Cannot contain any added Urea-Formaldehyde Resins.

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver in original, unopened containers bearing name of manufacturer, product identification and reference to U.L. testing.
B. Store materials dry, off ground, and under cover.
C. Protect liquid adhesive from freezing.
D. Water to be potable.
PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide International Cellulose Corporation.

B. Comparable Products: Comparable products of approved manufacturers will be considered in accordance with Section 016000 "Product Requirements," and the following:
 1. Products are approved by manufacturer in writing for application specified.
 2. Products meet performance and physical characteristics of basis of design product.

2.02 MATERIALS

 1. Color shall be from Manufacturer’s standard color chart.
 2. Comply with local Building Code requirements.
 3. Material to have been tested in accordance with ASTM E 1042. Testing laboratory must be NVLAP accredited.

PART 3 – EXECUTION

3.01 EXAMINATION

A. Examine surfaces and report unsatisfactory conditions in writing. Do not proceed until unsatisfactory conditions are corrected.

B. Verify surfaces to receive spray insulation to determine if priming/sealing is required to insure bonding and/or to prevent discoloration caused by migratory stains.

3.02 PREPARATION

A. Provide masking, drop cloths or other satisfactory coverings for materials/surfaces that are not to receive insulation to protect from over-spray.

B. Coordinate installation of the sprayed cellulose fiber with work of other trades.

C. Prime surfaces as required by manufacturer’s instructions or as determined by examination.
3.03 INSTALLATION

A. Install spray applied insulation according to manufacturer’s recommendations.
B. Install spray applied insulation to achieve an average NRC of 1.05.

| K-13 Sprayed Thermal and Acoustical Insulation ASTM C-423 on Solid Backing* |
|---|---|---|---|---|---|---|---|
| Inches | 125 HZ | 250 HZ | 500 HZ | 1000 HZ | 2000 HZ | 4000 HZ | NRC |
| 1.00 ** | 0.08 | 0.29 | 0.75 | 0.98 | 0.93 | 0.96 | 1.00 |
| 2.00 | 0.26 | 0.68 | 1.05 | 1.10 | 1.03 | 1.00 | 0.95 |
| 3.00 | 0.57 | 0.99 | 1.04 | 1.03 | 1.00 | 1.00 | |

| K-13 Sprayed Thermal and Acoustical Insulation Applied at 1.5” Ribbed Metal Deck* |
|---|---|---|---|---|---|---|---|
| Inches | 125 HZ | 250 HZ | 500 HZ | 1000 HZ | 2000 HZ | 4000 HZ | NRC |
| 1.50 | 0.36 | 0.89 | 1.26 | 1.07 | 1.01 | 1.00 | 1.05 |
| 3.00 | 0.97 | 1.04 | 1.13 | 0.99 | 0.95 | 0.98 | 1.05 |

*Some values interpolated **On lafth

C. Cure insulation with continuous natural or mechanical ventilation.
D. Remove and dispose of over-spray.

3.04 PROTECTION

A. Protect finished installation under provision of Division 1.

END OF SECTION 072129
SECTION 075419 - POLYVINYL-CHLORIDE (PVC) ROOFING

PART 1 - GENERAL

1.1 SUMMARY
A. Sika Corporation - Roofing System: This specifies the following adhered roofing system.
 1. Water Based Adhesive (Bareback or Feltback)

1.2 REFERENCES
A. Current Edition of: Identified reference requirements as put forth by the project specification.
 1. National Roofing Contractors Association (NRCA)

1.3 SUBMITTALS
A. Literature: Copies of current relevant information pertaining to the primary components to be used in the roof system including but not limited to:
 1. Specifications
 2. Sika Corporation - Roofing’s Warranty
 3. Applicator’s Warranty
 4. Product Data Sheets
 5. Material Safety Data Sheets
 6. FM/UL listings/approvals
 7. UL Environment validation of recycling claims
B. Samples for Verification: Representative samples of primary components to be used in the roof system.
C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work, including:
 1. Base flashings and membrane terminations.
 2. Tapered insulation, including slopes.
 3. Roof plan showing orientation of roof deck, orientation of roofing membrane, patterns for insulation attachment, and membrane fastening spacing.
 4. Fastening patterns for corner, perimeter, and field-of-roof locations.

1.4 QUALITY ASSURANCE
A. Sika Corporation Roofing Qualifications:
 1. Demonstrated performance history of producing PVC roof membranes no less, in duration of years, than the warranty duration specified.
 2. Manufactured by membrane supplier and not private labeled.
 3. Minimum of five years' experience recycling membranes at the end of their service life back into new membrane products. Provide a minimum of five reference projects.
B. Installer Qualifications:
1. A qualified firm that is authorized by Sika Corporation - Roofing to install all work pertaining to product manufacturer's roof system and that is eligible to receive manufacturer's warranty.

C. Preinstallation Roofing Conference: Conduct conference at Project site.

1. Sika Corporation – Roofing representative, Owner, Architect, Roofing Installer and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.

2. Review methods and procedures related to roofing installation, including manufacturer's most current requirements.

3. Review base flashings, special roofing details and transitions, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.

4. Review governing regulations and requirements for insurance and certificates.

5. Review temporary protection requirements for roofing system during and after installation.

6. Deviations from the project specifications or the approved shop drawings are not permitted without prior written approval by Sika Corporation – Roofing, the owner, the owner's representative, and the designer.

D. Fire Design:

1. Underwriters Laboratories, Inc. (Class A Assembly)

2. Other

E. Wind Design:

1. System shall meet minimum requirements in accordance of ASCE 7 per code jurisdiction
 a) Corner Uplift Pressure = 37 lbf/sq. ft.
 b) Perimeter Uplift Pressure = 26 lbf/sq. ft.
 c) Corner Uplift Pressure = 37 lbf/sq. ft.

1.5 DELIVERY, HANDLING, AND STORAGE

A. Deliver roofing materials to project site in original containers with seals unbroken and labeled with product manufacturer's name or product brand name.

B. Comply with most current product data sheet requirements when handling, storing, protecting, or installing roofing materials. Including but not limited to avoiding physical damage, deterioration by sunlight, excessive moisture, or other potentially damaging conditions.

C. Store liquid materials in their original undamaged containers in a clean, dry, protected location; away from direct sunlight; within the temperature range noted on the product data sheet.

D. Handle and store roofing materials and equipment in a manner to avoid permanent deflection of deck.

1.6 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's most current requirements and warranty requirements.

B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required and confirmed by roofing manufacturer.
1.7 WARRANTY

A. Sika Corporation - Roofing Warranty: Sika warrants to the owner the specified warranty for the specified warranty period as long as the roofing is installed according to Sika’s Technical instructions by a Sika Authorized Roofing Applicator. The warranty must be non-prorated and must not exclude coverage due to ponding water.

1. Warranty: SYSTEM
2. Warranty Period: 20 Number of years from date of substantial completion.

B. Applicator’s Warranty: Signed by installing applicator, covering the work of a System Warranty, including all components of roofing system installation such as membrane roofing, base flashing, roof insulation, fasteners, cover boards, vapor retarders, and walkway products, for the following warranty period:

1. Warranty Period: 5 Number of years from date of substantial completion.

C. The Contractor will provide a continuation of the existing roof warranty after inspection of the installed material
 1. Inspections to be provided by the roof membrane manufacturer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Sika Sarnafil, G410 Self Adhered Membrane.
 1. In order to maintain the existing roof warranty, the Contractor shall match the existing room membrane product, installation methods, attachment material and accessories

2.2 PERFORMANCE / DESIGN CRITERIA

A. ASTM D4434: Type II
B. NSF/ANSI Standard 347: Platinum
C. Guarantee membrane thickness meets or exceeds specified thickness when tested according to ASTM D751

2.3 ROOFING MATERIALS

A. PVC Sheet:
 1. Thermoplastic membrane, fiberglass scrim reinforcement, with lacquer coating

B. PVC Sheet Thickness:
 1. Sarnafil G410, 60 mil (1.5 mm)

C. PVC Sheet Exposed Face Color:
 1. EnergySmart White, initial solar reflectance of 0.83, emittance of 0.90, and solar reflective index (SRI) of 104.

D. Membrane Attachment Component:
1. Sarnacol 2121 (water-based adhesive)

E. Roof Board or Insulation Attachment Components:

1. Sarnaplate
2. Sarnafastener #12 (steel / wood decks)

F. Flashing Materials:

1. Wall/Curb Flashing:
 a. G459
 b. Detail Membrane
 c. Sarnaclad (PVC-coated sheet metal)

2. Perimeter Edge Flashing:
 a. Sarnaclad (PVC-coated sheet metal)

 b. Edge Grip Fascia
 1) Retainer base plate, 20 gauge galvanized steel in 10 ft. lengths
 2) Snap-on fascia cover, 24 gauge galvanized steel in 10 ft. lengths
 3) Snap-on fascia cover finish, metal with Kynar finish

 c. Edge Grip Extruded Fascia
 1) Retainer base plate, 0.10 inch aluminum in 10 ft. lengths
 2) Snap-on fascia cover finish, metal with Kynar finish

3. Misc. Flashing Accessories:
 a. Sarnacircles
 b. Sarnacorners Inside
 c. Sarnacorners Outside
 d. Sarnastack Universal
 e. Sarnastack Split
 f. Open Post Flashing
 g. Sarnareglet
 h. Sarnacol 2170 adhesive
 i. Sarnacol 2170 VC adhesive
 j. Sarnafelt
 k. Sarnadrain UFlow
 l. G410 Coverstrip

G. Miscellaneous Materials:

1. Accessories:
 a. Aluminum Tape
 b. Perimeter Warning Tape
 c. Perimeter Warning Membrane
 d. Seam Cleaner
 e. Sarnastop
 f. Sarnacord

2. Sealants and Pitch Pocket Fillers:
 a. Sikaflex-1a
 b. Sarnafiller
 c. Multi-Purpose Tape
 d. olply Adhesive Trowel Grade
3. Temporary Overnight Tie-ins (must be removed prior to start of next day’s roofing):
 a. Type III hot asphalt conforming to ASTM D312
 b. Sarnafiller
 c. Multiple layers of roofing cement and felt
 d. Spray-applied, water-resistant urethane foam
 e. Mechanical attachment with rigid bars and compressed sealant

4. PVC Welding Equipment:
 a. Sarnamatic
 b. Hand Welder

H. Nailers and Blocking:
 1. Wood, #2 quality or better, Wolmanized or Osmose treated for fire and rot resistance.
 2. Plywood, minimum 1/2 inch CDX (C side out).

I. SUPPORTS
 1. Manufacturer recommended supports for top ductwork.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Applicator shall verify that the work done under related sections meets the following conditions:
 1. Roof drains and scuppers have been installed properly, or reconditioned, or replaced.
 2. Roof curbs, nailers, equipment supports, vents and other roof penetrations are properly
 secured and prepared to receive new roofing materials.
 3. All surfaces are smooth and free of dirt, debris and incompatible materials.
 4. For concrete deck, verify that concrete substrate is dry and free of moisture. Verify that concrete
 curing compounds that will impair adhesion of roofing components to roof deck have been
 removed.
 5. All roof surfaces shall be free of water, ice and snow.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing installation
 according to roofing system manufacturer’s most current requirements. Remove sharp projections.
 B. Prevent materials from entering and clogging roof drains and flashings and from spilling or
 migrating onto surfaces of other construction. Remove roof drain plugs when no work is taking
 place or when rain is forecast.

3.3 ROOFING INSTALLATION, GENERAL
 a. Application shall be a current locally approved Sika Sarnafiler installer.
 B. Install roofing system according to product manufacturer's most current requirements including but
 not limited to roofing applicator handbook, product data sheets, specifications, and or relevant
 technical bulletins.
C. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at end of workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

D. For tie-in with existing roofing, install roofing and auxiliary materials to maintain weather tightness of transitions.

3.4 SARNATHERM INSULATION / ROOF BOARD INSTALLATION

A. Coordinate installing roofing system components so insulation or roof boards are not exposed to precipitation or other sources of moisture.

B. Comply with product manufacturer’s most current requirements for installing insulation or roof boards.

C. Install tapered insulation to conform to slopes indicated.

D. Install insulation to achieve required thickness. Use at least 2 layers of insulation when the total insulation thickness exceeds 2.7 inches. Stagger joints in both directions at least 12 inches between layers.

1. Where installing composite and non-composite insulation in two or more layers, install non-composite board insulation for bottom layer and intermediate layers, if applicable, and install composite board insulation for top layer.

E. Trim insulation where necessary at roof drains so completed surface is smooth and does not restrict flow of water.

F. Drains shall be properly sumped to allow membrane to sit flat without stretching or wrinkling.

G. Fill gaps exceeding 1/4 inch with insulation. Cut and fit insulation within 1/4 inch of nailers, projections, and penetrations.

H. Installation Method:

1. Urethane Adhered: Install layer/s of insulation or roof board and secure by adhering to substrate by using Sarnacol Urethane Board Adhesive at the spacing rate and application method according to Sika and Owner’s Representative/Designer.

3.5 SIKA ROOFING MEMBRANE INSTALLATION

A. The surface of the insulation or substrate shall be inspected prior to installation of the Sarnafil roof membrane. The substrate shall be clean, dry, free from debris and smooth with no surface roughness or contamination. Broken, delaminated, wet or damaged insulation boards shall be removed and replaced.

B. Accurately align roofing and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.

C. Apply roofing with side laps shingled with slope of roof deck where possible.

D. Make sure seam areas are free of debris, dirt, and dust, overlap membrane sheets, and hot-air weld side and end laps of roofing and sheet flashings according to manufacturer’s most current requirements to ensure a watertight seam installation.
1. Verify in-field weld strength of seams a minimum of twice daily, repair seam sample areas.
2. Test lap edges with probe to verify seam weld continuity.
3. If any tears or voids in lapped seams are found repair using appropriate approved technique.

E. Adhered System:

1. Water Based Adhesive (Bareback or Feltback):

a) Roller apply Sarnacol 2121 adhesive to the substrate with medium nap rollers. Place membrane into wet adhesive and immediately broom and roll with minimum 100 lb steel membrane roller. Adhesive shall not be used if temperatures below 40°F are expected during application or subsequent drying time.

2. Solvent Based Adhesive (Bareback):

a) Roller apply Sarnacol 2170/VC adhesive to the substrate with solvent-resistant rollers. Only the substrate area which can be completely covered with membrane in the same day's operations shall be coated with adhesive. Allow adhesive to dry completely.

b) Coat underside of membrane and allow to dry slightly to produce strings when touched with a dry finger, the coated membrane shall be rolled onto the previously-coated substrate. Do not allow adhesive on the underside of the membrane to dry completely. The bonded sheet shall be pressed firmly in place with a minimum 100 lb steel, membrane roller.

3.6 BASE / FIELD FLASHING INSTALLATION

A. Install all membrane and preformed flashings according to roofing system manufacturer’s most current requirements.

B. Install membrane base flashing by applying bonding adhesive to substrate and underside of membrane flashing at required rate. Do not apply to seam area of flashing.

C. Flash field penetrations and inside/outside corners with appropriate prefab flashing components or by approved custom in-field fabrication technique.

D. Firmly roll membrane flashing into the adhesive. Hot-air weld side and end laps to ensure a watertight seam installation.

E. Terminate and seal top of membrane flashings and mechanically anchor to substrate by approved Sika Corporation - Roofing detail.

F. Spread continuous sealant bead leaving no gaps over deck drain flange at roof drains, and securely seal roofing in place with clamping ring.

3.7 FIELD QUALITY CONTROL

A. Arrange for roofing system manufacturer’s technical personnel to inspect roofing installation upon completion.

B. Repair or remove and replace components of roofing system that do not comply with specified requirements.

C. Correct deficiencies in or remove roofing system that does not comply with requirements, repair substrates, and repair or reinstall roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
D. Additional testing and inspecting, at Contractor's expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.8 PROTECTION

A. Protect new roofing system from damage and wear during construction period. Inspect new roofing for damage if used during construction.

END OF SECTION 075419
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Product Schedule: For each penetration firestopping system. Include location and design
 designation of qualified testing and inspecting agency.
 1. Where Project conditions require modification to a qualified testing and inspecting
 agency's illustration for a particular penetration firestopping condition, submit illustration,
 with modifications marked, approved by penetration firestopping manufacturer's fire-
 protection engineer as an engineering judgment or equivalent fire-resistance-rated
 assembly.

1.3 INFORMATIONAL SUBMITTALS
 A. Installer Certificates: From Installer indicating penetration firestopping has been installed in
 compliance with requirements and manufacturer's written recommendations.
 B. Product test reports.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: A firm experienced in installing penetration firestopping similar in
 material, design, and extent to that indicated for this Project, whose work has resulted in
 construction with a record of successful performance. Qualifications include having the
 necessary experience, staff, and training to install manufacturer's products per specified
 requirements. Manufacturer's willingness to sell its penetration firestopping products to
 Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
 B. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following
 requirements:
 1. Penetration firestopping tests are performed by a qualified testing agency acceptable to
 authorities having jurisdiction.
2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems complying with the following requirements.

a. Penetration firestopping products bear classification marking of qualified testing and inspecting agency.

b. Classification markings on penetration firestopping correspond to designations listed by the following:

1) UL in its "Fire Resistance Directory."

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping when ambient or substrate temperatures are outside limits permitted by penetration firestopping manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation

1.6 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping is installed according to specified requirements.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping.

C. Notify Owner's testing agency at least seven days in advance of penetration firestopping installations; confirm dates and times on day preceding each series of installations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, supply all firestopping systems from one of the following manufacturers.
1. Grace Construction Products.
2. Hilti, Inc.
5. 3M Fire Protection Products.
6. Tremco, Inc., Tremco Fire Protection Systems Group
7. USG Corporation

2.2 PENETRATION FIRESTOPPING

A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-
resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. F-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.

D. Penetrations in Smoke Barriers: Provide penetration firestopping with ratings determined per UL 1479.
 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at 0.30-inch wg at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

F. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Sealants: 250 g/L.
 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 3. Sealant Primers for Porous Substrates: 775 g/L.

G. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

H. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected

3.2 PREPARATION

A. Surface Cleaning: Clean out openings immediately before installing penetration firestopping to comply with manufacturer's written instructions and with the following requirements:
 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping.
 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping. Remove loose particles remaining from cleaning operation.
 3. Remove laitance and form-release agents from concrete.

B. Priming: Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surface.

C. Masking Tape: Use masking tape to prevent penetration firestopping from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing firestopping's seal with substrates.

3.3 INSTALLATION

A. General: Install penetration firestopping to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths
 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.

C. Install fill materials for firestopping by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Identify penetration firestopping with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of firestopping edge so labels will be visible to anyone seeking to remove penetrating items or firestopping. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor’s name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer’s name.
6. Installer’s name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections.

B. Where deficiencies are found or penetration firestopping is damaged or removed because of testing, repair or replace penetration firestopping to comply with requirements.

C. Proceed with enclosing penetration firestopping with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping is without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping and install new materials to produce systems complying with specified requirements.

END OF SECTION 078413
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Elastomeric sealants for exposed exterior and interior building joints.
 2. Sanitary sealants.
 3. Paintable caulking.

1.2 ACTION SUBMITTALS
A. Product Data: For each joint-sealant product.
B. Samples: For each kind and color of joint sealant required.
C. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.3 INFORMATIONAL SUBMITTALS
A. Product test reports.
B. Preconstruction laboratory test reports.
C. Preconstruction field-adhesion-test reports.
D. Field-adhesion-test reports.
E. Sample warranties.

1.4 QUALITY ASSURANCE
A. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.
B. Sole source requirements: Provide only one brand of sealant for each required, regardless.
1.5 DELIVERY, STORAGE, HANDLING

A. Deliver and store products in unopened original packaging.

B. Prevent contamination and loss of performance or application characteristics.

1.6 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 PRECONSTRUCTION TESTING

1.8 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Source Control: Provide only one proprietary product for each type of sealant required, regardless of what subcontractor installs the sealants.

B. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
C. Multiple colors may be required for exposed sealants to coordinate with substrate colors.

D. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system shall comply with the following:

1. Architectural sealants shall have a VOC content of 250 g/L or less.
2. Sealants and sealant primers for nonporous substrates shall have a VOC content of [250] g/L or less.

E. Low-Emitting Interior Sealants: Sealants and sealant primers shall comply with the testing and product requirements of the California Department of Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

F. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 LIQUID APPLIED SEALANTS

A. Exterior Building Sealant: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.

 2. Subject to compliance with requirements, provide one of the following products.
 a. Dow Corning Corporation; 795.
 b. GE Construction Sealants; SCS2000 SilPruf.
 c. Pecora Corporation; PCS.
 d. Tremco; Spectrem 2.

B. Interior Elastomeric Sealant: Multicomponent, nonsag, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 50, Uses T and NT.

 1. Colors: Custom colors as directed by Architect.
 2. Subject to compliance with requirements, provide products of one of the following manufacturers.
 a. Bostik, Inc.
 b. Pecora.
 c. Tremco.
 d. Sika Corporation U.S.

C. Mildew-Resistant Joint Sealant: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.

 2. Subject to compliance with requirements, provide product of one of the following manufacturers:
 a) Dow Corning
 b) Pecora
 c) Tremco
 d) Sika Corporation U.S.
2.3 ACCESSORIES

A. Sealant Backing: ASTM C 1330, Type C closed-cell backer rod and joint fillers acceptable to sealant manufacturer, except supply Type O open-cell filler where recommended by sealant manufacturer for joint type. Supply fillers in indicated shapes and sized for 25-35 percent compression when installed.

2.4 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

 1. Remove laitance and form-release agents from concrete.
 2. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces.

3.2 INSTALLATION OF JOINT SEALANTS

A. General: Comply with ASTM C 1193 and joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.
B. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

C. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants to form smooth, uniform beads of configuration indicated. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 1. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.3 FIELD QUALITY CONTROL

A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 1. Extent of Testing: Test completed and cured sealant joints as follows:
 a. Perform one test for each 1000 feet (300 m) of joint length thereafter or one test per each floor per elevation.

B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.4 CLEANING

A. Clean off excess sealant and sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage
or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079200
SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Exterior storefront framing.
 2. Exterior manual-swing entrance doors.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site

1.3 ACTION SUBMITTALS

A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 1. Storefront framing.
 2. Glazed aluminum entrance doors.
 3. Manufacturer-supplied hardware.

B. Shop Drawings: Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction.
 2. Include details for draining moisture occurring within assemblies to the exterior.
 3. Show head flashing and joint seals that will prevent water intrusion into the assemblies and into building.
 4. Show modifications to existing construction needed for installation of replacement assemblies.
 5. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 6. Show connections to revolving doors.
 7. Show locations of exposed fasteners.
8. Show door hardware.

C. Samples: For each exposed finish required.

D. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams.

E. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Energy Performance Certificates: NFRC-certified energy performance values from manufacturer.

B. Product test reports.

C. Field quality-control reports.

D. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

B. Manufacturer warranties.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.

C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.

1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: Five years from date of Substantial Completion

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.
C. Structural Loads:

1. Wind Loads: 138 MPH
2. Exposure classifications: D
3. Rick Category: III

D. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to [edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite] or an amount that restricts edge deflection of individual glazing lites to 3/4 inch (19.1 mm), whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to [1/360 of clear span or 1/8 inch, whichever is smaller.
 a. Operable Units: Provide a minimum 1/16-inch clearance between framing members and operable units.
3. Cantilever Deflection: Where framing members overhang an anchor point, as follows:
 a. Perpendicular to Plane of Wall: No greater than 1/240 of clear span plus 1/4 inch for spans greater than 11 feet 8-1/4 inches or 1/175 times span, for spans less than 11 feet 8-1/4 inches.

E. Structural: Test according to ASTM E 330 as follows:

1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.
2. When tested at [150] percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding [0.2] percent of span.
3. Test Durations: As required by design wind velocity, but not less than [10] seconds.

F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:

1. Fixed Framing and Glass Area:
 a. Maximum air leakage of [0.06 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft. 6.24 lbf/sq. ft.]
2. Entrance Doors:
 a. Pair of Doors: Maximum air leakage of [1.0 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).
 b. Single Doors: Maximum air leakage of [0.5 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.

G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft. 10 lbf/sq. ft. 15 lbf/sq. ft. (720 Pa).
H. Energy Performance: Certify and label energy performance according to NFRC as follows:

1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than \([0.5 \text{ Btu/sq. ft. } \times \text{h} \times \text{deg F as determined according to NFRC 100.})
2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than \([0.40\) as determined according to NFRC 200.
3. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 45 as determined according to NFRC 500.

I. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 MANUFACTURERS

A. YKK AP America Inc.

B. Oldcastle Building Envelope.

C. Arcadia, Inc.

D. Arch Aluminum & Glass Co., Inc.

E. EFCO Corporation

F. Kawneer North America.

G. TRACO

2.3 FRAMING

A. Basic requirement: Match profiles of existing storefront framing.

B. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

1. Construction: Thermally broken
2. Glazing System: Retained mechanically with gaskets on four sides.
4. Finish: clear anodic finish
5. Fabrication Method: Field-fabricated stick system.

C. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

D. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

E. Materials:
1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 a. Sheet and Plate: ASTM B 209.
 b. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 d. Structural Profiles: ASTM B 308/B 308M.

2. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.
 a. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 b. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 c. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.4 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.

1. Door Construction: 2-inch (50.8-mm) overall thickness, with minimum 0.188-inch-thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.

2. Door Design: Medium stile; 3-1/2-inch (88.9-mm) nominal width.
 a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."

B. General: Provide entrance door hardware [and entrance door hardware sets indicated in door and frame schedule] for each entrance door to comply with requirements in this Section.

1. Entrance Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and products equivalent in function and comparable in quality to named products.
2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.
3. Opening-Force Requirements:
a. Egress Doors: Not more than 15 lbf to release the latch and not more than 30 lbf to set the door in motion and not more than 15 lbf to open the door to its minimum required width.

C. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of entrance door hardware are indicated in "Entrance Door Hardware Sets" Article. Products are identified by using entrance door hardware designations as follows:

1. Named Manufacturers’ Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers’ names are abbreviated in "Entrance Door Hardware Sets" Article.
2. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function.

D. Continuous-Gear Hinges: Manufacturer’s standard with stainless-steel bearings between knuckles, fabricated to full height of door and frame.
 1. Finish; same as framing and doors

E. Mortise Auxiliary Locks: BHMA A156.5, Grade 1.

F. Manual Flush Bolts: BHMA A156.16, Grade 1.

G. Cylinders: As specified in Section 087100 "Door Hardware." BHMA A156.5, Grade 1
 1. Keying: Master key system. Permanently inscribe each key with a visual key control number and include notation [to be furnished by Owner].

H. Strikes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.

I. Operating Trim: BHMA A156.6.

J. Closers: BHMA A156.4, Grade 1, with accessories required for a complete installation, sized as required by door size, exposure to weather, and anticipated frequency of use; adjustable to comply with field conditions and requirements for opening force.

K. Concealed Overhead Holders: BHMA A156.8, Grade 1.

L. Surface-Mounted Holders: BHMA A156.16, Grade 1.

M. Weather Stripping: Manufacturer’s standard replaceable components.
 1. Compression Type: Made of ASTM D 2000, molded neoprene, or ASTM D 2287, molded PVC.
 2. Sliding Type: AAMA 701/702, made of wool, polypropylene, or nylon woven pile with non-fabric or aluminum-strip backing.

N. Weather Sweeps: Manufacturer’s standard exterior-door bottom sweep with concealed fasteners on mounting strip.

O. Silencers: BHMA A156.16, Grade 1.

P. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.
2.6 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Glazing Sealants: As recommended by manufacturer.

D. Sealants used inside the weatherproofing system shall have a VOC content of 250 g/L.

E. Sealants used inside the weatherproofing system shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:

1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Physical and thermal isolation of glazing from framing members.
4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
5. Provisions for field replacement of glazing from interior.
6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

E. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

1. At exterior doors, provide compression weather stripping at fixed stops.

F. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
2. At exterior doors, provide weather sweeps applied to door bottoms.

G. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.
2.8 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

1. Comply with manufacturer's written instructions.
2. Do not install damaged components.
3. Fit joints to produce hairline joints free of burrs and distortion.
4. Rigidly secure nonmovement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:

1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed as specified in Section 079200 "Joint Sealants" to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 088000 "Glazing."

G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.

1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed entrances and storefronts.
1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.

a. Perform a minimum of two tests in areas as directed by Architect.

C. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.3 ENTRANCE DOOR HARDWARE SETS

END OF SECTION 084113
SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware

C. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 6. NFPA 105 - Installation of Smoke Door Assemblies.
 7. State Building Codes, Local Amendments.

D. Standards: All hardware specified herein shall comply with the following industry standards:
 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Details of electrified door hardware.

C. Samples: For each exposed product and for each color and texture specified.

D. Other Action Submittals:

 1. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

 a. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 b. Content: Include the following information:

 1) Identification number, location, hand, fire rating, size, and material of each door and frame.
 2) Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
3) Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.

4) Description of electrified door hardware sequences of operation and interfaces with other building control systems.

2. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks.

1.3 QUALITY ASSURANCE

A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.

D. Windstorm Assembly Installer Qualifications: Installers are to be factory trained and certified prior to project bid, and are responsible for commissioning, servicing, and warranting the installed equipment specified for the project.

E. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.
 1. Electrified modifications or enhancements made to a source manufacturer's product line by a secondary or third-party source will not be accepted.

F. Hurricane Resistant Exterior Openings: Provide exterior door hardware as complete and tested assemblies, or component assemblies, including approved doors and frames specified under Section 081113 "Hollow Metal Doors and Frames", to meet the wind loads, design pressures, debris impact resistance, and glass and glazing requirements applicable to the Project.
 1. Test units according to ASTM E330, ASTM E1886, ASTM E1996 standards, certified by a qualified independent third-party testing agency acceptable to authority having jurisdiction, and bearing a third-party certification agency permanent label indicting windstorm approved product.

G. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.

H. Keying Conference: Conduct conference to comply with requirements in Division 01 Section “Project Meetings.” Keying conference to incorporate the following criteria into the final keying schedule document:
 1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

I. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.
1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access-controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures.

J. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.

B. Tag each item or package separately with identification related to the final Door Hardware Schedule and include basic installation instructions with each item or package.

C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

1.5 COORDINATION
A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.

B. Door and Frame Preparation: Doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.
1.6 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:
 1. Structural failures including excessive deflection, cracking, or breakage
 2. Faulty operation of the hardware
 3. Deterioration of metals, metal finishes, and other materials beyond normal weathering
 4. Electrical component defects and failures within the systems operation

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:
 1. Five years for exit hardware
 2. Twenty-five years for manual surface door closer bodies

1.7 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. Provide door hardware for each door as scheduled [on Drawings] to comply with requirements in this Section.
 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, products equivalent in function and comparable in quality to named products.
 2. Contractor to coordinate with Owner's Building Standard.

B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Schedule" Article. Products are identified by using door hardware designations, as follows:
 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in Part 3 "Door Hardware Schedule" Article.
 2. References to BHMA Designations: Provide products complying with these designations and requirements for description, quality, and function.
2.2 CONTINUOUS HINGES
A. Continuous Geared Hinges: ANSI/BHMA A156.26 Grade 1-600 certified continuous geared hinge. with minimum 0.120-inch thick extruded 6060 T6 aluminum alloy hinge leaves and a minimum overall width of 4 inches. Hinges are non-handed, reversible and fabricated to template screw locations. Factory trim hinges to suit door height and prepare for electrical cutouts.
1. Specified Manufacturer:
 a. Pemko Manufacturing (PE).

2.3 DOOR OPERATING TRIM
A. Door Push Plates and Pulls: ANSI/BHMA A156.6 certified door pushes and pulls of type and design specified in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.
1. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
2. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets
3. Specified Manufacturer:
 a. Rockwood Manufacturing (RO)

2.4 CYLINDERS AND KEYING
A. General: Cylinder manufacturer to have minimum (10) years’ experience designing secured master key systems and have on record a published security keying system policy.
B. Source Limitations: Obtain each type of keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.
C. Cylinders: Original manufacturer cylinders complying with the following:
 1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application.
 2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ting.
 3. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.
D. Permanent Cores: Manufacturer's standard; finish face to match lockset; complying with the following:
 1. Interchangeable Cores: Core insert, removable by use of a special key; usable with other manufacturers’ cylinders.
E. Patented Cylinders: ANSI/BHMA A156.5, Grade 1, certified patented cylinders employing a utility patented and restricted keyway requiring the use of a patented key. Cylinders are to be protected from unauthorized manufacture and distribution by manufacturer's United States patents. Cylinders are to be factory keyed with owner having the ability for on-site original key cutting.
 1. Specified Manufacturer:
 a. Medeco (MC) - X4 Series
F. Keying System: Each type of lock and cylinders to be factory keyed.
 1. Conduct specified "Keying Conference" to define and document keying system instructions and requirements.
 2. Furnish factory cut, nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner. Existing System: Key locks to Owner's existing system.

G. Key Quantity: Provide the following minimum number of keys:
 1. Change Keys per Cylinder: Two (2)
 2. Master Keys (per Master Key Level/Group): Five (5)
 3. Construction Keys (where required): Ten (10)
 4. Construction Control Keys (where required): Two (2)

I. Key Registration List (Bitting List):
 1. Provide keying transcript list to Owner's representative in the proper format for importing into key control software.
 2. Provide transcript list in writing or electronic file as directed by the Owner.

2.5 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:
 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 3. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum framing.
 4. Double-lipped strikes: For locks at double acting doors. Furnish with retractable stop for rescue hardware applications.

B. Standards: Comply with the following:
 2. Strikes for Bored Locks and Latches: BHMA A156.2.
 3. Strikes for Auxiliary Deadlocks: BHMA A156.36.
 4. Dustproof Strikes: BHMA A156.16.

2.6 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:
 1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.
 2. Standards: Closers to comply with UL-10C for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.
 3. Cycle Testing: Provide closers which have surpassed 15 million cycles in a test witnessed and verified by UL.
4. Size of Units: Comply with manufacturer’s written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.

5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware sets.

6. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics.

7. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates as required for proper installation. Provide through-bolt and security type fasteners as specified in the hardware sets.

B. Door Closers, Surface Mounted (Heavy Duty): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one-piece cast iron or aluminum alloy body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control. Provide non-handed units standard.

1. Specified Manufacturer:
 a. Norton Door Controls (NO) - 7500 Series.

2.7 MANUAL FLUSH BOLTS

A. Manual Flush Bolts: BHMA A156.16; minimum 3/4-inch throw; designed for mortising into door edge.

1. Rockwood

2.8 ARCHITECTURAL SEALS

A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.

B. Smoke Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.

1. Provide smoke labeled perimeter gasketing at all smoke labeled openings

C. Fire Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.

1. Provide intumescent seals as indicated to meet UL10C Standard for Positive Pressure Fire Tests of Door Assemblies, and NPFA 252, Standard Methods of Fire Tests of Door Assemblies.

D. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

E. Specified Manufacturer:
1. Pemko Manufacturing (PE).

2.9 ACCESSORIES FOR PAIRS OF DOORS

A. Carry-Open Bars: BHMA A156.3; prevent the inactive leaf from opening before the active leaf; provide polished brass or bronze carry-open bars with strike plate for inactive leaves of pairs of doors unless automatic or self-latching bolts are used.

B. Astragals: BHMA A156.22.

2.10 THRESHOLDS

A. Thresholds: BHMA A156.21; fabricated to full width of opening indicated.

1. Pemko

2.11 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.12 FINISHES

A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.

C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.
3.2 PREPARATION

A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION

A. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:
 2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
 3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
 4. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.

B. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

C. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

PART 4 - CLEANING AND PROTECTION

4.1

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.
C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

4.2 DEMONSTRATION

A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

4.3 DOOR HARDWARE SETS

A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

END OF SECTION 087100
SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:

1. Glass for doors and storefront framing.
2. Glazing sealants and accessories.

1.2 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: Storefront system
C. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches square.

1.4 INFORMATIONAL SUBMITTALS

A. Preconstruction adhesion and compatibility test report.

1.5 QUALITY ASSURANCE

A. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.

1.6 PRECONSTRUCTION TESTING

A. Preconstruction Adhesion and Compatibility Testing: Test each glass product, tape sealant, gasket, glazing accessory, and glass-framing member for adhesion to and compatibility with elastomeric glazing sealants.

1. Testing is not required if data are submitted based on previous testing of current sealant products and glazing materials matching those submitted.
1.7 WARRANTY

A. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer’s written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.
 1. Obtain tinted glass from single source from single manufacturer.
 2. Obtain reflective-coated glass from single source from single manufacturer.

B. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 SAFETY GLAZING

A. Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design exterior glass, including comprehensive engineering analysis according to International Building Code by a qualified professional engineer, using the following design criteria:
 1. Design Wind Speed: 138 mph
 2. Exposure Classification: D
 3. Risk Category: III

B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the International Building Code and ASTM E 1300.
 1. Design Wind Pressures: As indicated on Drawings.
 2. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.
D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:

1. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
2. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
3. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.4 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.

1. Minimum glass thickness for exterior lites: 6mm

E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.5 GLASS PRODUCTS

A. Tinted Annealed Float Glass: ASTM C 1036, Type I, Class 2 (tinted), Quality-Q3.

1. Tint Color: Contractor to provide samples for field approval.

2.6 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190.
2. Spacer: Manufacturer's standard spacer material and construction.

2.7 GLAZING SEALANTS

A. Glazing Tape: Preformed, butyl-based, 100 percent solids elastomeric tape; non-staining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated.

2.8 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

G. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

2.9 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

B. Exterior Glazing: Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces

2.10 GLASS SCHEDULE

A. Glass Type GL-1: Insulating glass.
1. Overall Unit Thickness: 1 inch.
2. Exterior Lite: 6 mm tinted tempered glass with low-E coating on #2 surface.
 a. Basis of Design Product: Vitro Glass “Solarban 60”.
3. Interspace Content: Air.
4. Interior Lite: 6 mm clear tempered glass.
5. SHGC: Maximum 0.30.
6. Provide safety glazing labeling.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

3.2 PREPARATION
A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL
A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.
C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Apply heel bead of elastomeric sealant.

F. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

G. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to
produce a weathertight seal without developing bending stresses in glass. Seal gasket joints
with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction
operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry
surfaces at frequent intervals during construction, but not less than once a month, for buildup of
dirt, scum, alkaline deposits, or stains.

 1. If, despite such protection, contaminating substances do come into contact with glass,
 remove substances immediately as recommended in writing by glass manufacturer.
 Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

END OF SECTION 088000
SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: Provide materials and construction identical to those tested according to ASTM E 119.

B. STC-Rated Assemblies: Provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413.
 1. Clark Dietrub Building Systems
 2. Marino/Ware

2.2 FRAMING SYSTEMS

A. Steel Studs and Runners: ASTM C 645. Use either steel studs and runners or dimpled steel studs and runners of equivalent minimum base-metal thickness.
 1. Minimum Base-Metal Thickness: 0.018 inch.
 2. Depth: As indicated on Drawings.

B. Slip-Type Head Joints: Where indicated, provide one of the following in thickness not less than indicated for studs and in width to accommodate depth of studs:
 1. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes due to deflection of structure above.
 a. Steel Network: Verticlip SLD Series
 b. Superior metal trim; Superior Flex Track System (SFT)

2.3 AUXILIARY MATERIALS

A. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
B. Isolation Strip at Exterior Walls: Provide foam gasket.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754.

1. Gypsum Plaster Assemblies: Also comply with requirements in ASTM C 841 that apply to framing installation.
2. Portland Cement Plaster Assemblies: Also comply with requirements in ASTM C 1063 that apply to framing installation.
3. Gypsum Veneer Plaster Assemblies: Also comply with requirements in ASTM C 844 that apply to framing installation.
4. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

C. Install bracing at terminations in assemblies.

D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.3 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. Single Layer Application: 16” O.C. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.

D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings, except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.

2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.

3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

END OF SECTION 092216
SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Interior gypsum board.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
 B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL
 A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Georgia-Pacific Gypsum LLC.
 3. USG Corporation.
 B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.
 C. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396/C 1396M. With moisture- and mold-resistant core and paper surfaces.
 1. Core: 5/8 inch, Type X.
2. Long Edges: Tapered.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.4 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: PVC.

2. Shapes
 a. Corner bead
 b. Edge bead

2.5 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:

1. Interior Gypsum Board: Paper.

C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 4. Finish Coat: For third coat, use drying-type, all-purpose compound.
 5. Skim Coat: For final coat of Level 5 finish, use drying-type, all-purpose compound.

2.6 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standard and manufacturers written recommendations.

B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.

C. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing).

D. Acoustical Joint Sealant: ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings as demonstrated by testing according to ASTM E 90.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Accumetric LLC; BOSS 824 Acoustical Sound Sealant.
 b. Grabber Construction Products; Acoustical Sealant GSC.
 c. Pecora Corporation; AC-20 FTR.
 e. USG Corporation; SHEETROCK Acoustical Sealant.
2. Acoustical joint sealant shall have a VOC content of [250] <Insert value> g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Acoustical joint sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 3 - EXECUTION

3.1 APPLYING AND FINISHING PANELS

A. Comply with ASTM C 840.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

D. Install trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

E. Prefill open joints, rounded or beveled edges, and damaged surface areas.

F. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

G. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:

1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
2. Level 2: not used.
3. Level 3: not used.
4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

H. Protect adjacent surfaces from drywall compound and texture finishes and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

I. Remove and replace panels that are wet, moisture damaged, and mold damaged.

END OF SECTION 092900
SECTION 096513 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Resilient base.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches long.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Supply extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Quantity: Minimum 12 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials inside building.

1.5 5 FIELD CONDITIONS

A. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 VINYL BASE B-01

A. Basis of design product of Johnsonite is specified in the finishes list on the Drawings. Subject to conformance to requirements and satisfactory color match, comparable products of the following manufacturers will be acceptable.

1. Armstrong World Industries, Inc
2. Johnsonite
3. Roppe Corporation USA.
4. Burke Mercer Flooring Products, Division of Burke Industries Inc.
5. Flexco
6. VPI, LLC, Floor Products Division

B. Product Standard: ASTM F 1861, Type TV (vinyl, thermoplastic)
C. Minimum Thickness: 0.080 inch.
D. Height: As indicated on Drawings.
E. Lengths: Coils in manufacturer's standard length.
F. Outside Corners: Factory formed.
G. Inside Corners: Job or factory formed.

2.2 INSTALLATION MATERIALS
A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

3.2 PREPARATION
A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
C. Do not install resilient products until they are the same temperature as the space where they are to be installed.
D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.
3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. Preformed Corners: Install preformed corners before installing straight pieces.

G. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 6" in length.
 a. Form without producing discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 6" in length.
 a. Miter or cope corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 096513
SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and the application of paint systems on interior substrates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples: For each type of paint system and in each color and gloss of topcoat.

C. Product List: For each product indicated. Include printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Paint: 5 percent, but not less than [1 gal. (3.8 L) of each material and color applied.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Products: Subject to compliance with requirements, provide products listed in the Interior Finish Schedule.

2.2 PAINT, GENERAL

A. Material Compatibility:

1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.

C. Colors: As indicated in Finish Schedule.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Wood: 15 percent.
 2. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."

B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

C. Extend existing paint and coatings installations using materials and methods compatible with existing installations and as specified.
3.4 CLEANING AND PROTECTION

A. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

B. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

A. Ferrous Metal Door Frames:
 1. Sherwin-Williams

B. Gypsum Board: Flat Finish:
 1. Sherwin Williams
 a. Primer: One coat Promar 200 Zero VOC Interior Latex Primer, B28W2600
 b. Finish: Two coats Promar 200 Zero VOC Interior Latex Flat B30-2600

C. Gypsum Board: Eggshell Finish:
 1. Sherwin Williams:
 a. Primer: One coat Promar 200 Zero VOC Interior Latex Primer, B28W2600
 b. Finish: Two coats Promar 200 Zero VOC Interior Latex Eg-shel B20-2600

END OF SECTION 099123
SECTION 099600 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes surface preparation and the application of high-performance coating systems on the following substrates:
 1. Interior Substrates:
 a. Concrete, horizontal surfaces.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include preparation requirements and application instructions.
 1. Indicate VOC content.
B. Samples for Initial Selection: For each type of topcoat product indicated.
C. Samples for Verification: For each type of coating system and in each color and gloss of topcoat indicated.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Label each coat of each Sample.
 3. Label each Sample for location and application area.
D. Product List: For each product indicated, include the following:
 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 2. VOC content.

1.4 CLOSEOUT SUBMITTALS
A. Coating Maintenance Manual: Provide coating maintenance manual including area summary with finish schedule, area detail designating location where each product/color/finish was used, product data pages, material safety data sheets, care and cleaning instructions, touch-up procedures, and color samples of each color and finish used.

Rowan University
CREATES Lab Renovation
Rowan Project No. 77044
HIGH-PERFORMANCE COATINGS
June 1, 2018
Section 099600 - 1
1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Paint: 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Delivery and Handling: Deliver products to Project site in an undamaged condition in manufacturer's original sealed containers, complete with labels and instructions for handling, storing, unpacking, protecting, and installing. Packaging shall bear the manufacture’s label with the following information:

 1. Product name and type (description).
 2. Batch date.
 3. Color number.
 4. VOC content.
 5. Environmental handling requirements.
 6. Surface preparation requirements.
 7. Application instructions.

B. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply coatings only when temperature of surfaces to be coated and surrounding air temperatures are between 50 and 95 deg F.

B. Do not apply coatings when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

C. Do not apply exterior coatings in snow, rain, fog, or mist.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner.

E. Hazardous Materials: Hazardous materials including lead paint may be present in buildings and structures to be painted. A report on the presence of known hazardous materials is on file for review and use. Examine report to become aware of locations where hazardous materials are present.
1. Do not disturb hazardous materials or items suspected of containing hazardous materials except under procedures specified.
2. Perform preparation for painting of substrates known to include lead paint in accordance with EPA Renovation, Repair and Painting Rule and additional requirements of authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Sherwin-Williams Company (The)

B. Comparable Products: Comparable products of approved manufacturers will be considered in accordance with Section 016000 "Product Requirements," and the following:
 1. Products are approved by manufacturer in writing for application specified.
 2. Products meet performance and physical characteristics of basis of design product including published ratio of solids by volume, plus or minus two percent.

C. Source Limitations: Obtain paint materials from single source from single listed manufacturer.
 1. Manufacturer's designations listed on a separate color schedule are for color reference only and do not indicate prior approval.

2.2 HIGH-PERFORMANCE COATINGS, GENERAL

A. Material Compatibility:
 1. Provide materials for use within each coating system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a coating system, provide products recommended in writing by manufacturers of topcoat for use in coating system and on substrate indicated.
 3. Provide products of same manufacturer for each coat in a coating system.

B. VOC Content: For field applications that are inside the weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and, for interior paints and coatings applied at Project site, the following VOC content limits, exclusive of colorants added to a tint base, when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Anticorrosive and Antirust Paints Applied to Ferrous Metals: 250 g/L.
 2. Floor Coatings: 100 g/L.

C. Low-Emitting Materials: Interior paints and coatings shall comply with the testing and product requirements of the California Department of Health Service's "Standard Practice for the Testing of Volatile Organic Chemical Emissions from Various Sources Using Small Scale Environmental Chambers."
D. Colors: As selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

A. Testing of Coating Materials: Owner reserves the right to invoke the following procedure:

1. Owner will engage the services of a qualified testing agency to sample coating materials. Contractor will be notified in advance and may be present when samples are taken. If coating materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
2. Testing agency will perform tests for compliance with product requirements.
3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying coating materials from Project site, pay for testing, and recoat surfaces coated with rejected materials. Contractor will be required to remove rejected materials from previously coated surfaces if, on recoating with complying materials, the two coatings are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers. Where acceptability of substrate conditions is in question, apply samples and perform in-situ testing to verify compatibility, adhesion, and film integrity of new paint application.

1. Report in writing conditions that may affect application, appearance, or performance of paint.

B. Substrate Conditions:

1. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 a. Concrete: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected; application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated.
B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

C. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.

D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces to be coated exceeds that permitted in manufacturer's written instructions.

E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

3.3 APPLICATION

A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

1. Use applicators and techniques suited for coating and substrate indicated.
2. Coat surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, coat surfaces behind permanently fixed equipment or furniture with prime coat only.
3. Coat back sides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
4. Do not apply coatings over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of the same material are to be applied. Tint undercoats to match color of finish coat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.

D. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test coatings for dry film thickness.
1. Contractor shall touch up and restore coated surfaces damaged by testing.
2. If test results show that dry film thickness of applied coating does not comply with coating manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with coating manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from coating operation. Correct damage by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

3.6 INTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Concrete Substrates, Horizontal Surfaces.

1. Epoxy System:
 b. Topcoat: Epoxy, Gloss:
 1) S-W Armorseal 8100 Water Based Epoxy Floor Coating, B70 Series, at 2.0 to 4.0 mils dry, per coat.

B. Steel Substrates:

1. Pre-Catalyzed Waterbased Epoxy System:
 a. Prime Coat: Primer, rust-inhibitive, water based:
 1) S-W Pro-Cryl Universal Primer, B66-310 Series, at 2.0 to 4.0 mils (0.051 to 0.102 mm) dry, per coat.
 c. Topcoat: Epoxy-modified latex, interior, eggshell:
 1) S-W Pro Industrial Pre-Catalyzed Waterbased Epoxy Eggshell, K45 Series, at 1.5 mils (0.038 mm) dry, per coat.
 d. Topcoat: Epoxy-modified latex, interior, semi-gloss:
1) S-W Pro Industrial Pre-Catalyzed Waterbased Epoxy Semi-Gloss, K46 Series, at 1.5 mils (0.038 mm) dry, per coat.

END OF SECTION 099600
SECTION 22 05 00 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. Equipment installation requirements common to equipment sections.
10. Concrete bases.
11. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:

2. CPVC: Chlorinated polyvinyl chloride plastic.
3. PE: Polyethylene plastic.
4. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, “Structural Welding Code—Steel.”

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, “Welding and Brazing Qualifications.”

2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:

1. ABS Piping: ASTM D 2235.
2. CPVC Piping: ASTM F 493.
3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
4. PVC to ABS Piping Transition: ASTM D 3138.

I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

1. Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 d. JCM Industries.
 e. Smith-Blair, Inc.
 f. Viking Johnson.
 g. Or approved equal.

2. Aboveground Pressure Piping: Pipe fitting.

B. Plastic-to-Metal Transition Fittings: CPVC one-piece fitting with manufacturer’s Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

1. Manufacturers:
 a. Eslon Thermoplastics.
 b. NIBCO
 c. Flowguard
 d. Or approved equal.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer’s SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

1. Manufacturers:
 a. Thompson Plastics, Inc.
 b. GF Central Plastics
 c. LASCO Fittings, Inc.
 d. Or approved equal.
D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.

1. Manufacturers:
 a. FW Webb Co.
 b. NIBCO, Inc.; Chemtrol Div.
 c. Spears Manufacturing Co.
 d. Or approved equal.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.
 h. Or approved equal.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150-psig minimum working pressure as required to suit system pressures.

1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
 e. Or approved equal.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Or approved equal.
2. Separate companion flanges and steel bolts and nuts shall have 150-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.
 c. Watts Water Technologies
 d. Or approved equal.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.
 e. Or approved equal.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 e. Or approved equal.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated “wall pipe” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated

E. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
O. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section “Penetration Firestopping” for materials.

P. Verify final equipment locations for roughing-in.

Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA’s “Copper Tube Handbook,” using lead-free solder alloy complying with ASTM B 32.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 “Quality Assurance” Article.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

H. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
5. PVC Nonpressure Piping: Join according to ASTM D 2855.
6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.

I. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
J. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

K. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

L. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer’s written instructions.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section “Metal Fabrications” for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.
3.6 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.7 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 220500
SECTION 22 05 23 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze angle valves.
2. Bronze ball valves.
3. Iron ball valves.
5. Iron, grooved-end butterfly valves.
7. Bronze swing check valves.
8. Iron swing check valves.
9. Iron swing check valves with closure control.
10. Iron, grooved-end swing check valves.
12. Iron, plate-type check valves.
15. Bronze globe valves.
17. Lubricated plug valves.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.4 SUBMITTALS
A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
A. Refer to valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Class 125, Bronze Angle Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Or approved equal.

 2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.
B. Class 125, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Or approved equal.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

C. Class 150, Bronze Angle Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Stockham Division.
 b. Kitz Corporation.
 c. NIBCO INC.
 d. Or approved equal.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

D. Class 150, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Or approved equal.
2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

2.3 BRASS BALL VALVES

A. One-Piece, Reduced-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Kitz Corporation.
b. NIBCO, INC.
c. Milwaukee Valve Company.
d. Or approved equal.

2. Description:

b. CWP Rating: 400 psig.
c. Body Design: One piece.
d. Body Material: Forged brass.
e. Ends: Threaded.
f. Seats: PTFE or TFE.
g. Stem: Brass.
h. Ball: Chrome-plated brass.
i. Port: Reduced.

B. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. DynaQuip Controls.
d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
e. Hammond Valve.
f. Jamesbury; a subsidiary of Metso Automation.
g. Jomar International, LTD.
h. Kitz Corporation.
i. Legend Valve.
j. Marwin Valve; a division of Richards Industries.
k. Milwaukee Valve Company.
l. NIBCO INC.
m. Red-White Valve Corporation.
n. RuB Inc.
 o. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

C. Two-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 d. Hammond Valve.
 e. Jamesbury; a subsidiary of Metso Automation.
 f. Kitz Corporation.
 g. Marwin Valve; a division of Richards Industries.
 h. Milwaukee Valve Company.
 i. RuB Inc.
 j. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

D. Two-Piece, Regular-Port, Brass Ball Valves with Brass Trim:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve.
 b. Jamesbury; a subsidiary of Metso Automation.
 c. Legend Valve.
 d. Marwin Valve; a division of Richards Industries.
e. Milwaukee Valve Company.
f. Or approved equal

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Forged brass.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Brass.
i. Ball: Chrome-plated brass.
j. Port: Regular.

E. Two-Piece, Regular-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Jamesbury; a subsidiary of Metso Automation.
b. Marwin Valve; a division of Richards Industries.
c. Sharpe.
d. Or approved equal.

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Brass or bronze.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Regular.

F. Three-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Jomar International, LTD.
b. Kitz Corporation.
c. Red-White Valve Corporation.
d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
e. Or approved equal.

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Three piece.
e. Body Material: Forged brass.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Brass.
i. Ball: Chrome-plated brass.
j. Port: Full.

G. Three-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Jomar International, LTD.
 b. Kitz Corporation.
 c. Marwin Valve; a division of Richards Industries.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.4 BRONZE BALL VALVES

A. One-Piece, Reduced-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. NIBCO INC.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
g. Stem: Bronze.
h. Ball: Chrome-plated brass.
i. Port: Reduced.

B. One-Piece, Reduced-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. NIBCO INC.
 c. Sharpe.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Reduced.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
j. Port: Full.

D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

E. Two-Piece, Regular-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. DynaQuip Controls.
 f. Hammond Valve.
 g. Lance Valves; a division of Advanced Thermal Systems, Inc.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
h. Stem: Bronze.
i. Ball: Chrome-plated brass.
j. Port: Regular.

F. Two-Piece, Regular-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. Or approved equal.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Regular.

G. Three-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. DynaQuip Controls.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corporation.
 g. Or approved equal.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.
H. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following):
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Or approved equal.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.5 IRON BALL VALVES

A. Class 125, Iron Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kitz Corporation.
 d. Sure Flow Equipment Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Or approved equal.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Ends: Flanged.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel.
 i. Port: Full.
2.6 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
 n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 q. Or approved equal.

2. Description:

 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

B. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
 n. Red-White Valve Corporation.
2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: NBR.
f. Stem: One- or two-piece stainless steel.
g. Disc: Aluminum bronze.

C. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Ductile-Iron Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. American Valve, Inc.
c. Conbraco Industries, Inc.; Apollo Valves.
d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
e. Crane Co.; Crane Valve Group; Center Line.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. DeZurik Water Controls.
h. Flo Fab Inc.
i. Hammond Valve.
j. Kitz Corporation.
k. Legend Valve.
l. Milwaukee Valve Company.
m. Mueller Steam Specialty; a division of SPX Corporation.
n. NIBCO INC.
o. Norriseal; a Dover Corporation company.
q. Sure Flow Equipment Inc.
r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
s. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Nickel-plated ductile iron.

D. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Ductile-Iron Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. American Valve, Inc.
c. Conbraco Industries, Inc.; Apollo Valves.
d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
e. Crane Co.; Crane Valve Group; Center Line.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. DeZurik Water Controls.
h. Flo Fab Inc.
i. Hammond Valve.
j. Kitz Corporation.
k. Legend Valve.
l. Milwaukee Valve Company.
m. Mueller Steam Specialty; a division of SPX Corporation.
n. NIBCO INC.
o. Norriseal; a Dover Corporation company.
q. Sure Flow Equipment Inc.
r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
s. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: NBR.
f. Stem: One- or two-piece stainless steel.
g. Disc: Nickel-plated ductile iron.

E. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. American Valve, Inc.
c. Conbraco Industries, Inc.; Apollo Valves.
d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. DeZurik Water Controls.
h. Flo Fab Inc.
i. Hammond Valve.
j. Kitz Corporation.
k. Legend Valve.
l. Milwaukee Valve Company.
m. Mueller Steam Specialty; a division of SPX Corporation.
n. NIBCO INC.
o. Norriseal; a Dover Corporation company.
q. Spence Strainers International; a division of CIRCOR International, Inc.

r. Sure Flow Equipment Inc.

s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

t. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.

e. Seat: EPDM.

f. Stem: One- or two-piece stainless steel.

g. Disc: Stainless steel.

F. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valves and Controls; A div. of ABZ Manufacturing, Inc.

b. American Valve, Inc.

c. Conbraco Industries, Inc.; Apollo Valves.

d. Cooper Cameron Valves; A div. of Cooper Cameron Corp.

e. Crane Co.; Crane Valve Group; Jenkins Valves.

f. Crane Co.; Crane Valve Group; Stockham Div.

g. DeZurik Water Controls.

h. Flo Fab Inc.

i. Hammond Valve.

j. Kitz Corporation.

k. Legend Valve.

l. Milwaukee Valve Company.

m. Mueller Steam Specialty; a division of SPX Corporation.

n. NIBCO INC.

o. Norriseal; a Dover Corporation company.

q. Spence Strainers International; a division of CIRCOR International, Inc.

r. Sure Flow Equipment Inc.

s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

t. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.

e. Seat: NBR.

f. Stem: One- or two-piece stainless steel.

g. Disc: Stainless steel.
2.7 IRON, GROOVED-END BUTTERFLY VALVES

A. 175 CWP, Iron, Grooved-End Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Kennedy Valve; a division of McWane, Inc.
b. Shurjoint Piping Products.
c. Tyco Fire Products LP; Grinnell Mechanical Products.
d. Victaulic Company.
e. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 175 psig.
c. Body Material: Coated, ductile iron.
e. Disc: Coated, ductile iron.
f. Seal: EPDM.

B. 300 CWP, Iron, Grooved-End Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anvil International, Inc.
b. Kennedy Valve; a division of McWane, Inc.
c. Mueller Steam Specialty; a division of SPX Corporation.
d. NIBCO INC.
e. Shurjoint Piping Products.
f. Tyco Fire Products LP; Grinnell Mechanical Products.
g. Victaulic Company.
h. Or approved equal.

2. Description:

a. Standard: MSS SP-67, Type I.
b. NPS 8 and Smaller CWP Rating: 300 psig.
c. NPS 10 and Larger CWP Rating: 200 psig.
d. Body Material: Coated, ductile iron.
e. Stem: Two-piece stainless steel.
f. Disc: Coated, ductile iron.
g. Seal: EPDM.

2.8 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Or approved equal.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Lift Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. Mueller Steam Specialty; a division of SPX Corporation.
 f. NIBCO INC.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Or approved equal.

 2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: NBR, PTFE, or TFE.

2.9 BRONZE SWING CHECK VALVES
 A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.
m. Or approved equal.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
j. Or approved equal.

2. Description:

a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: PTFE or TFE.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. American Valve, Inc.
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Zy-Tech Global Industries, Inc.
j. Or approved equal.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 g. Or approved equal.

2. Description:

 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

2.10 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Sure Flow Equipment Inc.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.
n. Or approved equal.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Apollo Valves.
 d. Or approved equal.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Composition.
 g. Seat Ring: Bronze.
 h. Disc Holder: Bronze.
 i. Disc: PTFE or TFE.
 j. Gasket: Asbestos free.

C. Class 250, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 500 psig.
 c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Gasket: Asbestos free.

2.11 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. NIBCO INC.
 b. Powell Valves.
 c. Crane.
 d. Or approved equal.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever- and Weight-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and weight.
2.12 IRON, GROOVED-END SWING CHECK VALVES
A. 300 CWP, Iron, Grooved-End Swing Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anvil International, Inc.
b. Shurjoint Piping Products.
c. Tyco Fire Products LP; Grinnell Mechanical Products.
d. Victaulic Company.
e. Or approved equal.

2. Description:

a. CWP Rating: 300 psig.
c. Seal: EPDM.
d. Disc: Spring-operated, ductile iron or stainless steel.

2.13 IRON, CENTER-GUIDED CHECK VALVES
A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anvil International, Inc.
b. APCO Willamette Valve and Primer Corporation.
c. Crispin Valve.
d. DFT Inc.
e. Flo Fab Inc.
f. GA Industries, Inc.
g. Hammond Valve.
h. Metraflex, Inc.
i. Milwaukee Valve Company.
j. Mueller Steam Specialty; a division of SPX Corporation.
k. NIBCO INC.
l. Spence Strainers International; a division of CIRCOR International, Inc.
m. Sure Flow Equipment Inc.
n. Val-Matic Valve & Manufacturing Corp.
o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
p. Or approved equal.

2. Description:

b. CWP Rating: 200 psig.
d. Style: Compact wafer.
e. Seat: Bronze.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flomatic Corporation.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. Mueller Steam Specialty; a division of SPX Corporation.
 i. NIBCO INC.
 j. Spence Strainers International; a division of CIRCOR International, Inc.
 k. Sure Flow Equipment Inc.
 l. Val-Matic Valve & Manufacturing Corp.
 m. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 n. Or approved equal.

2. Description:
 b. CWP Rating: 200 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

C. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

D. Class 150, Iron, Globe, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 d. Or approved equal.
2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

E. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.
 k. Or approved equal.

2. Description:
 b. CWP Rating: 400 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: Bronze.

F. Class 250, Iron, Globe, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flomatic Corporation.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. Mueller Steam Specialty; a division of SPX Corporation.
 i. NIBCO INC.
 j. Val-Matic Valve & Manufacturing Corp.
 k. Or approved equal.

2. Description:
b. CWP Rating: 400 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: Bronze.

G. Class 300, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 500 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: Bronze.

H. Class 300, Iron, Globe, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 500 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

I. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
2. Description:

b. CWP Rating: 200 psig.
d. Style: Compact wafer.
e. Seat: EPDM.

J. Class 125, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anvil International, Inc.
 b. APCO Willamette Valve and Primer Corporation.
 c. Crispin Valve.
 d. DFT Inc.
 e. GA Industries, Inc.
 f. Hammond Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.
 k. Or approved equal.

2. Description:

 b. CWP Rating: 200 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM.

K. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 d. Or approved equal.

2. Description:

 b. CWP Rating: 300 psig.
d. Style: Compact wafer.
e. Seat: EPDM

L. Class 150, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Val-Matic Valve & Manufacturing Corp.
 e. Or approved equal.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM

M. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Sure Flow Equipment Inc.
 i. Val-Matic Valve & Manufacturing Corp.
 j. Or approved equal.

2. Description:
 b. CWP Rating: 400 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: EPDM

N. Class 250, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. DFT Inc.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Val-Matic Valve & Manufacturing Corp.
h. Or approved equal.

2. Description:

b. CWP Rating: 400 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: EPDM

O. Class 300, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. Val-Matic Valve & Manufacturing Corp.
d. Or approved equal.

2. Description:

b. CWP Rating: 500 psig.
d. Style: Compact wafer, spring loaded.
e. Seat: EPDM

P. Class 300, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. Val-Matic Valve & Manufacturing Corp.
d. Or approved equal.

2. Description:

b. CWP Rating: 500 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: EPDM
2.14 IRON, PLATE-TYPE CHECK VALVES

A. Class 125, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Flomatic Corporation.
 d. Mueller Steam Specialty; a division of SPX Corporation.
 e. Or approved equal.

2. Description:

 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: Bronze.

B. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. Val-Matic Valve & Manufacturing Corp.
 e. Or approved equal.

2. Description:

 b. CWP Rating: 300 psig.
 e. Seat: Bronze.

C. Class 250, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Gestra.
 d. Or approved equal.

2. Description:

 b. CWP Rating: 400 psig.
d. Body Material: ASTM A 126, gray iron.
e. Seat: Bronze.

D. Class 300, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. Val-Matic Valve & Manufacturing Corp.
 e. Or approved equal.

2. Description:
 b. CWP Rating: 500 psig.
 e. Seat: Bronze.

E. Class 125, Iron, Single-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Sure Flow Equipment Inc.
 c. Danfoss.
 d. Or approved equal.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM

F. Class 125, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Cooper Cameron Valves TVB Techno.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. NIBCO INC.
 f. Spence Strainers International; a division of CIRCOR International, Inc.
 g. Sure Flow Equipment Inc.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. **Description:**

 b. CWP Rating: 200 psig.

 d. Body Material: ASTM A 126, gray iron.

 e. Seat: EPDM

G. **Class 150, Iron, Dual-Plate Check Valves with Resilient Seat:**

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.

 b. Crane Co.; Crane Valve Group; Crane Valves.

 c. Crane Co.; Crane Valve Group; Jenkins Valves.

 d. Val-Matic Valve & Manufacturing Corp.

 e. Or approved equal.

 2. **Description:**

 b. CWP Rating: 300 psig.

 e. Seat: EPDM

H. **Class 250, Iron, Wafer, Single-Plate Check Valves with Resilient Seat:**

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Sure Flow Equipment Inc.

 b. Wellworth.

 c. Danfoss.

 d. Or approved equal.

 2. **Description:**

 b. CWP Rating: 400 psig.

 d. Body Material: ASTM A 126, gray iron.

 e. Seat: EPDM.

I. **Class 250, Iron, Dual-Plate Check Valves with Resilient Seat:**

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.

 b. Crane Co.; Crane Valve Group; Crane Valves.
2. **Description:**

 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM

J. Class 300, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Val-Matic Valve & Manufacturing Corp.
 c. Crane.
 d. Or approved equal.

2. **Description:**

 b. CWP Rating: 500 psig.
 e. Seat: EPDM

2.15 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.
 m. Or approved equal.

2. **Description:**

 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

B. Class 125, RS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.
 l. Or approved equal.

2. Description:

 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

C. Class 150, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Hammond Valve.
 b. Kitz Corporation.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Powell Valves.
 f. Red-White Valve Corporation.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.

2. Description:

 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

D. Class 150, RS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.
 j. Or approved equal.

2. Description:

 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

2.16 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Legend Valve.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Powell Valves.
 k. Red-White Valve Corporation.
I. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

m. Zy-Tech Global Industries, Inc.

n. Or approved equal.

2. Description:

a. Standard: MSS SP-70, Type I.

b. CWP Rating: 200 psig.

c. Body Material: ASTM A 126, gray iron with bolted bonnet.

d. Ends: Flanged.

e. Trim: Bronze.

f. Disc: Solid wedge.

g. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.

b. Crane Co.; Crane Valve Group; Jenkins Valves.

c. Crane Co.; Crane Valve Group; Stockham Division.

d. Flo Fab Inc.

e. Hammond Valve.

f. Kitz Corporation.

g. Legend Valve.

h. Milwaukee Valve Company.

i. NIBCO INC.

j. Powell Valves.

k. Red-White Valve Corporation.

l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

m. Zy-Tech Global Industries, Inc.

n. Or approved equal.

2. Description:

a. Standard: MSS SP-70, Type I.

b. CWP Rating: 200 psig.

c. Body Material: ASTM A 126, gray iron with bolted bonnet.

d. Ends: Flanged.

e. Trim: Bronze.

f. Disc: Solid wedge.

g. Packing and Gasket: Asbestos free.

C. Class 250, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.

b. Crane Co.; Crane Valve Group; Stockham Division.

c. NIBCO INC.

d. Or approved equal.
2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

D. Class 250, OS&Y, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.

2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

2.17 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 j. Zy-Tech Global Industries, Inc.
 k. Or approved equal.
2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

B. Class 125, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. NIBCO INC.
 d. Red-White Valve Corporation.
 e. Or approved equal.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

C. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.
 j. Or approved equal.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
2.18 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Zytech Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.
 l. Or approved equal.

2. Description:

 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

B. Class 250, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.

2. Description:

 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Packing and Gasket: Asbestos free.

2.19 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.
4. Or approved equal.

B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.

1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
2. Attachment: For connection to ball valve stems.
3. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve. Include zinc coating.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly valves.
2. Throttling Service: ball, or butterfly valves.
3. Pump-Discharge Check Valves:

 a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with bronze disc.
b. NPS 2-1/2 (DN 65) and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 (DN 125) and Larger: Flanged ends.
4. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

3.4 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125, bronze disc.
3. Ball Valves: Two piece, full port, bronze trim.
4. Bronze Swing Check Valves: Class 125, bronze disc.
5. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron Swing Check Valves with Closure Control: Class 125, lever and spring.
5. Iron Gate Valves: Class 125, NRS.

END OF SECTION 220523
SECTION 22 05 29 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Fiberglass strut systems.
5. Thermal-hanger shield inserts.
6. Fastener systems.
7. Pipe stands.
8. Pipe positioning systems.
9. Equipment supports.

B. Related Sections include the following:

1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.
3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
4. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:

1. Steel pipe hangers and supports.
2. Fiberglass pipe hangers.
3. Thermal-hanger shield inserts.
4. Powder-actuated fastener systems.
5. Pipe positioning systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:

1. Trapeze pipe hangers. Include Product Data for components.
2. Metal framing systems. Include Product Data for components.
3. Fiberglass strut systems. Include Product Data for components.
4. Pipe stands. Include Product Data for components.
5. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code-Steel."

B. Welding: Qualify procedures and personnel according to the following:

1. AWS D1.1, "Structural Welding Code--Steel."
3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Manufacturers:
1. AAA Technology & Specialties Co., Inc.
2. Bergen-Power Pipe Supports.
4. Carpenter & Paterson, Inc.
5. Empire Industries, Inc.
6. ERICO/Michigan Hanger Co.
7. Globe Pipe Hanger Products, Inc.
8. Grinnell Corp.
9. GS Metals Corp.
11. PHD Manufacturing, Inc.
12. PHS Industries, Inc.
13. Piping Technology & Products, Inc.
14. Tolco Inc.
15. Or approved equal.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers:
2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
3. GS Metals Corp.
5. Thomas & Betts Corporation.
6. Tolco Inc.
7. Unistrut Corp.; Tyco International, Ltd.
8. Or approved equal.

C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Manufacturers:

1. Carpenter & Paterson, Inc.
2. ERICO/Michigan Hanger Co.
3. PHS Industries, Inc.
4. Pipe Shields, Inc.
5. Rilco Manufacturing Company, Inc.
6. Value Engineered Products, Inc.
7. Or approved equal.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:

 a. Hilti, Inc.
 b. ITW Ramset/Red Head.
 c. Masterset Fastening Systems, Inc.
 d. MKT Fastening, LLC.
 e. Powers Fasteners.
 f. Or approved equal.
B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.
 g. Or approved equal.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.
 d. Or approved equal.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.
 d. Or approved equal.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.
 d. Or approved equal.

3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.
 d. Or approved equal.

2. Bases: One or more plastic.
3. Vertical Members: Two or more protective-coated-steel channels.
4. Horizontal Member: Protective-coated-steel channel.
5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.

B. Manufacturers:
 2. HOLDRITE Corp.; Hubbard Enterprises.
 3. Samco Stamping, Inc.
 4. Or approved equal.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
7. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb (340 kg).
 b. Medium (MSS Type 32): 1500 lb (680 kg).
 c. Heavy (MSS Type 33): 3000 lb (1360 kg).
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners instead of building attachments where required in concrete construction.
3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

M. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches long and 0.048 inch thick.
 b. NPS 4 (DN 100): 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 (DN 200) and Larger: Include wood inserts.
6. Insert Material: Length at least as long as protective shield.
7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.
3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529
SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 2. Letter Color: Black.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Black.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1-1/2 inches high.

2.4 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.

3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS
A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION
A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION
A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:

1. Domestic Water Piping:
 a. Background Color: Black
 b. Letter Color: White

2. Compressed Air
 a. Background Color: Yellow
 b. Letter Color: Black

END OF SECTION 220553
SECTION 22 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig, and is reduced to secondary pressure of more than 0.5 psig but not more than 2 psig.

C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.
2. Detail mounting, supports, and valve arrangements for and pressure regulator assembly.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of seismic restraints.
2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Owner no fewer than two days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Owner’s written permission.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

3. **Unions:** ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.

4. **Forged-Steel Flanges and Flanged Fittings:** ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. **Protective Coating for Underground Piping:** Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

6. **Mechanical Couplings:**
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Dresser Piping Specialties; Division of Dresser, Inc.
 2) Smith-Blair, Inc.
 3) Trupply, LLC.
 4) Or approved equal.
 b. Steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. **Corrugated, Stainless-Steel Tubing:** Comply with ANSI/IAS LC 1.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. OmegaFlex, Inc.
 b. Parker Hannifin Corporation; Parflex Division.
 c. Titeflex.
 d. Tru-Flex Metal Hose Corp.
 e. Or approved equal.

2. **Tubing:** ASTM A 240/A 240M, corrugated, Series 300 stainless steel.

3. **Coating:** PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
1) Flame-Spread Index: 25 or less.
2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

4. Corrugated stainless-steel tubing with polymer coating.
5. Operating-Pressure Rating: 0.5 psig.
7. Maximum Length: 72 inches.

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.

1. Copper-alloy convenience outlet and matching plug connector.
2. Nitrile seals.
3. Hand operated with automatic shutoff when disconnected.
4. For indoor or outdoor applications.
5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. Basket Strainers:

1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

E. T-Pattern Strainers:
1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
2. End Connections: Grooved ends.
3. Strainer Screen: 40-mesh startup strainer and perforated stainless-steel basket with 57 percent free area.
4. CWP Rating: 750 psig.

F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.
C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.
e. Perfection Corporation; a subsidiary of American Meter Company.
f. Or approved equal

3. Ball: Chrome-plated brass.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Separate packnut with adjustable-stem packing threaded ends.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.
e. Perfection Corporation; a subsidiary of American Meter Company.
f. Or approved equal

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.
e. Perfection Corporation; a subsidiary of American Meter Company.
f. Or approved equal
3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.
 c. Homestead Valve Co.
 d. Or approved equal

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Xomox Corporation; a Crane company.
 d. Or approved equal.

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
I. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flowserve.
 b. Homestead Valve; a division of Olson Technologies, Inc.
 d. Milliken Valve Company.
 e. Mueller Co.; Gas Products Div.
 g. Or approved equal

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 EARTHQUAKE VALVES

A. Earthquake Valves: Comply with ASCE 25.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Vanguard Valves, Inc.
 b. Firefighter Gas Safety Products
 c. Pacific Seismic Products, Inc.
 d. Or approved equal.

2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 5 psig.
5. Nitrile-rubber valve washer.
7. Threaded end connections complying with ASME B1.20.1.
8. Wall mounting bracket with bubble level indicator.

B. Earthquake Valves: Comply with ASCE 25.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pacific Seismic Products, Inc.
 b. Vanguard Valves, Inc.
2. c. Firefighter Gas Safety Products
d. Or approved equal.

2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 0.5 psig.
4. Cast-aluminum body with stainless-steel internal parts.
6. Valve position, open or closed, indicator.
7. Composition valve seat with clapper held by spring or magnet locking mechanism.
8. Level indicator.
9. End Connections: Threaded for valves NPS 2 and smaller; flanged for valves NPS 2-1/2 and larger.

2.6 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.
 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings comparable product by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 d. Invensys.
 e. Richards Industries; Jordan Valve Div.
 f. Or approved equal
 3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 7. Orifice: Aluminum; interchangeable.
 9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 10. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, product name or designation or comparable product by one of the following:

 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.
 h. Or approved equal

3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
7. Orifice: Aluminum; interchangeable.
9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
10. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product name or designation or comparable product by one of the following:

 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.
 f. Or approved equal

9. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
10. Maximum Inlet Pressure: 1 psig.
2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or approved equal

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.
 f. Or approved equal

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
d. Pipeline Seal and Insulator, Inc.
e. Or approved equal

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

2.8 LABELING AND IDENTIFYING
 A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
 B. Inspect natural-gas piping according to The International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
 C. Comply with The International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION
 A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
 B. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.
 C. Install fittings for changes in direction and branch connections.
D. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

S. Do not use natural-gas piping as grounding electrode.

T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

C. Install earthquake valves aboveground outside buildings according to listing.

3.6 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:

1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
2. Cut threads full and clean using sharp dies.
3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS’s "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.7 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

D. Install hangers for horizontal drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2 and NPS 5/8: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 3. NPS 3/4 and NPS 7/8: Maximum span, 84 inches; minimum rod size, 3/8 inch.
 4. NPS 1: Maximum span, 96 inches; minimum rod size, 3/8 inch.

E. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.8 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.
B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
C. Install piping adjacent to appliances to allow service and maintenance of appliances.
D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

A. Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for painting interior and exterior natural-gas piping.
B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Alkyd System: MPI EXT 5.1D.
 c. Topcoat: Exterior alkyd enamel flat.
 d. Color: Gray.
 C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
c. Topcoat: Interior latex flat.

d. Color: Gray.

2. Alkyd System: MPI INT 5.1E.

c. Topcoat: Interior alkyd flat.

d. Color: Gray

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to seismic codes at Project.

 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.

 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.

 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

 5. Install anchor bolts to elevations required for proper attachment to supported equipment.

 6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Section 033000 "Cast-in-Place Concrete."

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.13 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.
3.14 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be one of the following:
 1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.

B. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Annealed-temper copper tube with wrought-copper fittings and brazed joints.

C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 3. Annealed-temper, copper tube with wrought-copper fittings and brazed joints.
 4. Aluminum tube with flared fittings and joints.
 5. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Drawn-temper copper tube with wrought-copper fittings and brazed joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

D. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.16 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Aboveground, branch piping NPS 4 and smaller shall be one the following:
1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
3. Annealed-temper, copper tube with wrought-copper fittings and brazed joints.
4. Aluminum tube with flared fittings and joints.
5. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:

1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with steel welding fittings and welded joints.
3. Drawn-temper copper tube with wrought-copper fittings and brazed joints.

C. Underground, below building, piping shall be one of the following:

1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.17 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:

1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.
3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:

1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.
3. Cast-iron, nonlubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:
1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 221123
SECTION 22 15 13 - GENERAL-SERVICE COMPRESSED-AIR PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes piping and related specialties for general-service compressed-air systems operating at 150 psig or less.

1.2 ACTION SUBMITTALS
 A. Product Data: For the following:
 1. Pressure regulators. Include rated capacities and operating characteristics.
 2. Automatic drain valves.
 3. Filters. Include rated capacities and operating characteristics.
 4. Lubricators. Include rated capacities and operating characteristics.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS
 A. Steel Pipe: ASTM A53/A53M, Type E or S, Grade B, black with ends threaded according to ASME B1.20.1.
 4. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel, threaded.
B. Copper Tube: ASTM B88, Type K or L (ASTM B88M, Type A or B) and ASTM B88, Type M (ASTM B88M, Type C) seamless, drawn-temper, water tube.

1. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, wrought copper with dimensions for brazed joints.
2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300.
3. Copper Unions: ASME B16.22 or MSS SP-123.

C. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

1. PVC Fittings: ASTM D2466, Schedule 40, socket type.

2.2 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents.

1. ASME B16.21, nonmetallic, flat, full-face, asbestos free, 1/8-inch (3.2-mm) maximum thickness.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated.

E. Solvent Cements for Joining PVC Piping: ASTM D2564. Include primer complying with ASTM F656.

2.3 VALVES

A. Metal Ball, Butterfly, Check, and Gate Valves: Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

2.4 DIELECTRIC FITTINGS

A. General Requirements for Dielectric Fittings: Combination fitting of copper alloy and ferrous materials with insulating material; suitable for system fluid, pressure, and temperature. Include threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Dielectric Unions: Factory-fabricated union assembly, for 250-psig 1725-kPa minimum working pressure at 180deg F (82 deg. C).
2.5 FLEXIBLE PIPE CONNECTORS

A. Bronze-Hose Flexible Pipe Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

2. End Connections, NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections, NPS 2-1/2 and Larger: Flanged copper alloy.

B. Stainless-Steel-Hose Flexible Pipe Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

2. End Connections, NPS 2 and Smaller: Threaded steel pipe nipple.
3. End Connections, NPS 2-1/2 and Larger: Flanged steel nipple.

2.6 SPECIALTIES

A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.

1. Pressure Settings: Higher than discharge pressure and same or lower than receiver pressure rating.

B. Air-Main Pressure Regulators: Bronze body, pilot-operated direct acting, spring-loaded manual pressure-setting adjustment, and rated for 250-psig inlet pressure, unless otherwise indicated.

C. Air-Line Pressure Regulators: Diaphragm or pilot operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 200-psig minimum inlet pressure, unless otherwise indicated.

D. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate.[Include mounting bracket if wall mounting is indicated.

E. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded. Include mounting bracket if wall mounting is indicated.

F. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration, and drain cock.[Include mounting bracket if wall mounting is indicated.

2.7 QUICK COUPLINGS

A. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.

B. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.
1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.

C. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-plated-steel operating parts.

1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
2. Plug End: With barbed outlet for attaching hose.

2.8 HOSE ASSEMBLIES

A. Description: Compatible hose, clamps, couplings, and splicers suitable for compressed-air service, of nominal diameter indicated, and rated for 300-psig minimum working pressure, unless otherwise indicated.

2. Hose Clamps: Stainless-steel clamps or bands.
3. Hose Couplings: Two-piece, straight-through, threaded brass or stainless-steel O-ring or gasket-seal swivel coupling with barbed ends for connecting two sections of hose.
4. Hose Splicers: One-piece, straight-through brass or stainless-steel fitting with barbed ends for connecting two sections of hose.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Compressed-Air Piping between Air Compressors and Receivers: Use the following piping materials for each size range:

1. NPS 2 and Smaller: Steel pipe; threaded, malleable-iron fittings; and threaded joints.
2. NPS 2 and Smaller: Type K or L, copper tube; wrought-copper fittings; and brazed joints.

B. Low-Pressure Compressed-Air Distribution Piping: Use the following piping materials for each size range:

1. NPS 2 and Smaller: Steel pipe; threaded, malleable-iron fittings; and threaded joints.
2. NPS and Smaller: Type K or L, copper tube; wrought-copper fittings; and brazed joints.

C. Drain Piping: Use the following piping materials:

1. NPS 2 and Smaller: Type M copper tube; wrought-copper fittings; and brazed or soldered joints.
2. NPS 2 and Smaller: PVC pipe and fittings; and solvent-cemented joints.
3.2 VALVE APPLICATIONS

A. Comply with requirements in "Valve Applications" Article in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

B. Equipment Isolation Valves: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.

E. Install piping adjacent to equipment and machines to allow service and maintenance.

F. Install air and drain piping with 1 percent slope downward in direction of flow.

G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.

H. Equipment and Specialty Flanged Connections:
 1. Use steel companion flange with gasket for connection to steel pipe.
 2. Use cast-copper-alloy companion flange with gasket and brazed joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.

I. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

J. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 220519 "Meters and Gages for Plumbing Piping."

K. Install piping to permit valve servicing.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and branch connections.
N. Install seismic restraints on piping. Seismic-restraint devices are specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

O. Install unions, adjacent to each valve and at final connection to each piece of equipment and machine.

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from pipe and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Apply appropriate tape or thread compound to external pipe threads.

D. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

E. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Join according to ASTM B828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

G. Solvent-Cemented Joints for PVC Piping: Clean and dry joining surfaces. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer and join according to ASME B31.9 for solvent-cemented joints and to ASTM D2672.

H. Dissimilar Metal Piping Material Joints: Use dielectric fittings.

3.5 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

B. Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.

C. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.
D. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION
A. Install dielectric unions in piping at connections of dissimilar metal piping and tubing.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION
A. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.
B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.
C. Install stainless-steel-hose flexible pipe connectors in steel compressed-air piping.

3.8 SPECIALTY INSTALLATION
A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.
B. Install air-main pressure regulators in compressed-air piping at or near air compressors.
C. Install air-line pressure regulators in branch piping to equipment.
D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.
E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters. Mount on wall at locations indicated.
F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters. Mount on wall at locations indicated.
G. Install quick couplings at piping terminals for hose connections.
H. Install hose assemblies at hose connections.

3.9 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
C. Vertical Piping: MSS Type 8 or 42, clamps.
D. Individual, Straight, Horizontal Piping Runs:
1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers.
2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

I. Install hangers for Schedule 40, steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4 to NPS 1/2: 96 inches with 3/8-inch rod.
 2. NPS 3/4 to NPS 1-1/4: 84 inches with 3/8-inch rod.
 3. NPS 1-1/2: 12 feet with 3/8-inch rod.
 4. NPS 2: 13 feet (4 m) with 3/8-inch rod.

J. Install supports for vertical, Schedule 40, steel piping every 15 feet.

K. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.

L. Install supports for vertical copper tubing every 10 feet.

3.10 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for general-service compressed-air piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

3.11 FIELD QUALITY CONTROL

A. Perform field tests and inspections.

B. Tests and Inspections:
 1. Piping Leak Tests: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
2. Repair leaks and retest until no leaks exist.
3. Inspect filters, lubricators, and pressure regulators for proper operation.

END OF SECTION 221513
SECTION 23 05 00 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. HVAC demolition.
9. Equipment installation requirements common to equipment sections.
10. Painting and finishing.
11. Concrete bases.
12. Supports and anchorages.
13. Specific requirements for conducting work required by this contract.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:

1. CPVC: Chlorinated polyvinyl chloride plastic.
2. PE: Polyethylene plastic.
3. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
 A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

 B. Welding certificates.

1.5 QUALITY ASSURANCE
 A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

 B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

 C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

 B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION
 A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

 B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.4 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Nibco, Inc.
 b. US Plastics Corporation.
 c. Spears.
 d. Or approved equivalent.

B. Plastic-to-Metal Transition Unions: CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Manufacturers:
 a. Nibco, Inc.
 b. US Plastics Corporation.
 c. Watts.
 d. Or approved equivalent.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.
 h. Or approved equivalent.
D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
 e. Or approved equivalent.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Or approved equivalent.

2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.
 c. Watts.
 d. Or approved equivalent.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.
 e. Or approved equivalent.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers:
2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated “wall pipe” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.
E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated
D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated
E. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.
2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 COMPLIANCE WITH CODES, STANDARDS AND REGULATIONS

A. In addition to general instructions contained in the General or Project Requirements, equipment and its installation shall conform to the following applicable codes, standards and regulations, latest editions:

2. American Society of Mechanical Engineers (ASME).
4. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
5. American Refrigeration Institute (ARI).
7. Code for Pressure Piping (ANSI B 31.1).
11. National and Local Building, Plumbing and Mechanical Codes.
12. Occupational Safety & Health Act (OSHA).
17. National Environmental Balancing Bureau (NEBB).
20. Manufacturer's Standardization Society (MSS).
22. Environmental Protection Agencies - Federal, State and Local (EPA).

3.2 STANDARD OF QUALITY

A. The specifications establish the standards of quality required, either by description or by references to brand name, name of manufacturers or manufacturer's model number.

B. Where one product only is specifically identified by name or manufacturer's model number, the Contractor shall base his bid on the use of the named product. Where multiple names are used, the Contractor shall base his bid on the use of any of those products named. The Contractor is advised that the scheduled manufacturer on the contract drawings and/or the first manufacturer listed in the specifications is the manufacturer whose equipment was used as the Basis of Design. As such the other manufacturer's listed may have variances requiring additional coordination and revisions to the product of other trades. The Contractor bears full
responsibility for the cost of any changes incurred by using equipment other than the Basis of Design noted equipment.

C. When equipment and/or materials are proposed to be purchased from a manufacturer other than those specified, the Contractor shall provide data sufficient to inform the Engineer of the basis of equality of the substitution to that of the equipment and/or materials specified.

D. When equipment other than that specified is used, the Contractor shall be responsible for any extra cost of required revisions such as structural steel, concrete, electrical, piping, ductwork and any engineering review or redesign, etc. Such additional cost shall be identified at the time such substitutions are proposed.

E. Contractor is responsible for the installation of all systems and equipment in strict accordance with the equipment or systems manufacturer’s recommendations and/or requirements. In the event that the contract documents are not in accordance with the manufacturer's recommendations, the Contractor must notify the Engineer of the discrepancy, prior to proceeding with the installation of the equipment.

3.3 CONNECTIONS TO EXISTING WORK

A. The information shown on the contract drawings for the locations and inverts of the existing services are taken from information provided by local authorities, the building owner and other available data.

B. Contractors shall verify the location, elevations, size and present usage of existing utilities lines and shall notify the Engineers of any discrepancy with the contract drawings before proceeding with the work.

C. Contractors should be aware that existing facilities may be occupied and in use during the construction period. Whenever connection of new work is required to existing services, arrange with the Owner and schedule the work to minimize interruption of service. Existing services shall not be interrupted without providing the Owner with a minimum of one week notice for service interruptions and having received the Owner's written approval.

3.4 PROTECTION OF WORK

A. Contractor is responsible for the protection of his materials, equipment and completed work as defined in the General or Project Requirements and as supplemented herein.

B. All openings into any part of the piping and duct systems, all fixtures and equipment must be securely covered or otherwise protected to prevent damage due to dropped tools or materials, work by others or intrusion of grit, dirt or other foreign matter. The Contractor shall be held responsible for all damage done to unprotected work or materials.

C. All equipment on site, whether stored or installed, shall be protected with weather tight covers.

3.5 MOVING OF EQUIPMENT

A. Verify that mechanical equipment will pass through all restricting openings, and when equipment or sections of equipment are larger than these openings, install this equipment prior to construction of enclosing walls, floors or roofs.
B. Use planking or cribbing as required to protect adjoining existing construction or new construction from damage.

3.6 HVAC DEMOLITION

A. Refer to Contract Drawings for general and specific requirements for HVAC equipment demolition and removal.

B. Refer to Division 02 “Selective Structure Demolition.”

C. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

D. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality. Coordinate this work with Owner and Engineer prior to beginning work.

3.7 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.
G. Install piping at indicated slopes.
H. Install piping free of sags and bends.
I. Install fittings for changes in direction and branch connections.
J. Install piping to allow application of insulation.
K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed or exposed-rivet hinge and set screw or spring clips.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
 l. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.
N. Permanent sleeves are not required for holes formed by removable PE sleeves.
O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.8 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

3.9 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.10 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.11 CUTTING, PATCHING AND PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

B. Provide all openings through walls, floors and ceilings, etc. required for the installation of work defined on the Contract Drawings and Specifications.

C. Following installation and testing, restore floors, walls and ceilings with materials equivalent to the original construction and finish to match existing surfaces. All existing fire ratings shall be maintained without exception.

D. Cutting and patching shall be performed only by tradesmen familiar with the construction involved.

3.12 FLASHING

A. Where ducts, pipes or other items pass through any roof, wall or other exterior component, provide flashing as detailed on Contract Drawings. At a minimum, for roofing penetrations, contractor shall finalize all penetrations in accordance with roofing system manufacturer's requirements (whether warranty is valid or invalid). If roof warranty is intact, contractor shall notify roofing manufacturer prior to commencing work to insure all warranties will be maintained post work completion.

3.13 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Miscellaneous Cast-in-Place Concrete."
3.14 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Structural Steel Framing" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment. Provide all miscellaneous steel supports and anchors required for equipment and materials installed under this Specification. Manual of Construction by American Institute of Steel Construction latest edition shall be followed in design and construction except paragraph 4.2.1 and 4.2.2, Section 4 of Division 5, page 5-177 will not apply. Structural steel members shall conform to ASTM A36, and shall have a shop applied coat of rust inhibitive paint.

C. Field Welding: Comply with AWS D1.1.

D. Bolts, nuts and washer shall be high tensile type minimum 3/4” diameter conforming to ASTM A325.

3.15 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.16 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrainment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 23 05 00
SECTION 23 05 18 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
c. Insulated Piping: One-piece, stamped-steel type.
d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Welding certificates.
1.4 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, “Structural Welding Code - Steel.”

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

C. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
D. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated or stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.

3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.

4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.

6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.

7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29
SECTION 23 05 48 – VIBRATION ISOLATION AND WIND LOAD RESTRAINTS FOR HVAC, PLUMBING & ELECTRICAL COMPONENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specifications Sections apply to this Section.

B. This section specifies required vibration control for all equipment, where applicable, with the wind load requirements for all equipment in outdoor locations. Additionally, included are provisions for flood control as stated herein. When projects are located in a geographically active wind or flood location, Section 1.4, General Design and Performance Requirements, will elaborate on those requirements and include specifics pertaining to a facility’s “continued operation.” Para. 1.2, Section D is a partial list of components covered herein. This specification is part of the general conditions for the HVAC, Plumbing, Electrical and Fire Protection contracts.

1.2 SUMMARY

A. This section includes the following:

1. All equipment, piping, ductwork and conduit as noted on the drawing’s schedule or in the specification shall be seismically braced if the building is so classified as listed herein. Vibration control shall apply as described in all cases herein.

2. All outdoor equipment, including roof-mounted components, shall comply with section 1609, Wind Load, IBC-2015. There shall be no decrease of the effects of wind load on a component due to other structures or components acting as blocks or screens.

3. All below, at grade or above grade locations located in a flood hazard area as defined and located herein.

4. Wind, flood load and isolation materials shall be the certified products of the same manufacturing group and shall be certified by that group.

5. It is the intent of the wind load portion of this specification to keep all mechanical, electrical, plumbing and fire protection building system components in place during a seismic or high wind event and additionally operational where the occupancy category of the building so requires as listed herein.

6. All such systems must be installed in strict accordance with wind codes, component manufacturer’s and building construction standards.

7. This specification is considered to be minimum requirements for wind, flood and vibration control considerations.
8. Any variation, which results in non-compliance with the specification requirements, shall be corrected by the contractor in an approved manner.

B. The work in this section includes, but is not limited to, the following:

1. Vibration isolation for piping, ductwork, bus duct, cable tray conduit and equipment, all referred to as components.

2. Component isolation bases.

3. Wind restraints for isolated components.

4. Wind restraints for non-isolated components.

5. Certification of wind restraint designs.

6. Installation supervision.

7. Design of attachment of housekeeping pads.

8. All components requiring IBC compliance and certification.

9. All inspection and test procedures for components requiring IBC compliance.

C. All mechanical, electrical, plumbing or fire protection equipment, pipe and ductwork, within, on or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.

D. Components referred to below are typical. (Components not listed are still included in this specification.) All systems that are part of the building in any way are referred to as components, including:

- AC Units
- Adapter Curb
- Air Handling Units
- Air Separators
- Battery Chargers
- Battery Racks
- Boilers
- Bus Ducts
- Cabinet Unit Heaters
- Cable Trays
- Chillers
- Compressor
- Computer Room Units
- Condensing Units
- Cooling Towers
- Curbs
- Dry Coolers
- Ductwork
- Electrical Panels
- Equipment Supports
- Fans (all types)
- Fan Coil Units
- Fire Alarm Panels
- Gas Detection Systems
- Generators
- Heat Exchangers
- Humidifiers
- Light Fixtures
- Motor Control Centers
- Pipe
- Pumps (all types)
- Risers
- Rooftop Units
- Supports
- Switch Gear
- Tanks (all types)
- Transformers
- Unit Heaters
- Unit Substations
- Unit Ventilators
- Variable Frequency Drives
- VAV Boxes
1.3 DEFINITIONS (BUILDING AND COMPONENTS, ALL CODES)

A. ESSENTIAL FACILITIES, (Occupancy Category, IBC-2015)

1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

B. General

1. Anchor: A device, such as an expansion bolt, for connecting equipment bracing members to the structure of a building.

2. Approved Agency: An established and recognized agency regularly engaged in conducting tests or furnishing analytical or inspection services, when such agency has been approved.

3. Attachment: See Positive Attachment below.

4. Basic Wind Speed: The basic wind speed, in mph, for determination of the wind loads shall be as per Section 1609 (IBC-2015), or local code, if more severe. Local jurisdictions shall determine wind speeds for indicated special wind regions located near gorges or mountainous terrain. Section 6.5.4 of ASCE 7-10 shall be used after determination of basic wind speed by the local jurisdiction. See Section 1609.3 ASCE 7-10 for basic wind speed determination in non-hurricane prone regions.

5. Bracing: Metal channels, cables or hanger angles that prevent components from breaking away from the structure during an earthquake or high winds. See also Longitudinal Bracing and Transverse Bracing. Together, they resist environmental loads from any direction.

6. Certificate of Compliance: A certificate stating that materials and products meet specified standards or that work was done in compliance with approved construction documents, provided by an approved agency. (Certificate to be supplied by equipment component manufacturer.)

7. Component: A non-structural part or element of an architectural, electrical, mechanical, plumbing or fire protection system within or without of a building system.

8. Component Importance Factor: Factor applied to a component that defines the criticality of that component. This factor can be 1.0 or 1.5.

9. Component, flexible: Component, including its attachments, having a fundamental period greater than 0.06 seconds.

10. Component, rigid: Component, including its attachments, having a fundamental period less than or equal to 0.06 seconds.

11. Consequential Damage: The functional and physical interrelationship of components, their supports and their effect on each other shall be considered so that the failure of an essential or non-essential architectural, mechanical or electrical component shall not cause the failure of an essential architectural, mechanical or electrical component.

12. Equipment: Systems associated with ducts, pipes and conduits also called components.
13. **Flood or Flooding:** A general and temporary condition or partial and complete inundation of normally dry land from:

 a. The overflow of inland or tidal waters.
 b. The unusual and rapid accumulation of runoff of surface waters from any source.

14. **Flood Hazard Area:** The greater of the following of two areas:

 a. The area within a flood plain subject to a 1 percent or greater chance of flooding in any year.
 b. The area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

15. **Special Flood Hazard Area Subject to High Velocity Wave Action:** Area within the flood hazard area that is subject to high velocity wave action and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as zone V, VO, VE or VI-30.

16. **Flood Insurance Rate Map (FIRM):** An official map of a community on which the Federal Emergency Management Agency (FEMA) has delineated both the special flood hazard areas and the risk premium zones applicable to the community.

17. **Gas pipes:** For the purposes of this Specification Guide, gas pipe is any pipe that carries fuel, gas, fuel oil, medical gas, or compressed air.

18. **Hazardous Contents:** A material that is highly toxic or potentially explosive or corrosive and in sufficient quantity to pose a significant life-safety threat to the general public if an uncontrolled release were to occur.

19. **Hurricane Prone Regions:** Areas prone to hurricanes include the U.S. Atlantic Ocean, Gulf Coasts, Hawaii, Puerto Rico, Guam, Virgin Islands, and American Samoa where the wind speed is greater than 90 mph.

20. **Importance Factor, I:** A factor that accounts for the degree of hazard to human life and damage to property.

21. **Inspection Certificate:** An identification applied on a product by an approved agency containing the name of the manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the product or material has been inspected and evaluated by an approved agency (see Section 1703.5 and “Label” and “Manufacturer’s Designation” and “Mark”).

22. **Label:** An identification applied on a product by the manufacturer that contains the name of the manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency (see Section 1703.5 and “Inspection Certificate,” “Manufacturer’s Designation” and “Mark”).

23. **Lateral forces:** A force acting on a component in the horizontal plane. This force can be in any direction.

24. **Longitudinal bracing:** Bracing that prevents a component from moving in the direction of its run.

25. **Longitudinal force:** An applied force that happens to be in the same direction as the duct or pipe run.
26. Mark: An identification applied on a product by the manufacturer indicating the name of the manufacturer and the function of a product or material (see also “Inspection Certificate,” “Label” and “Manufacturer’s Designation”).

27. Manufacturer’s Designation: An identification applied on a product by the manufacturer indicating that a product or material complies with a specified standard or set of rules (see also “Inspection Certificate,” “Label” and “Mark”).

28. Occupancy Category: A classification used to determine structural load requirements including those imposed by wind, flood, snow and seismic based on occupancy of the structure.

29. Positive Attachment: A mechanical device, designed to resist seismic forces, which connects a non-structural element, such as a duct, to a structural element, such as a beam. Bolts and welding are examples of positive attachments. Surface glue and friction anchorage do not constitute positive attachment. Examples of positive attachment are epoxy cast in anchors and drill in wedge shaped anchor bolts to concrete and welded or bolted connections directly to the building structure. Double-sided beam clamps, C type are not acceptable as either brace point attachments to the structure or for the support of the component at the bracing location.

30. Site Class: A classification assigned to a site based on the types of soils present and their engineering properties as defined in Table 1613.5.2 (IBC-2015).

31. Special Inspection: Inspection as herein required of the materials, installation, fabrication, erection or placement of components and connections requiring special documents and referenced standards (see Section 1704, IBC-2015).

32. Special Inspection, Continuous: The full-time observation of work requiring special inspection by an approved special inspector who is present in the area where the work is being performed.

33. Special Inspection, Periodic: The part-time or intermittent observation of work requiring special inspection by an approved special inspector who is present in the area where the work has been or is being performed and at the completion of the work.

34. Story Drift Ratio: The story drift (Lateral displacement) divided by the story height.

35. Wind-Borne Debris Region: Portions of hurricane-prone regions that are within 1 mile of the coastal mean high water line where the basic wind speed is 110 mph or greater, or portions of hurricane-prone regions where the basic wind speed is 120 mph or greater; or Hawaii.

1.4 GENERAL DESIGN AND PERFORMANCE REQUIREMENTS

A. General Design Requirements.

1. SEISMIC CONSIDERATIONS: This project has seismic design requirements as follows:
 a. NONE

2. WIND CONSIDERATIONS: This project has wind design requirements as follows:
a. Wind load in hurricane, tornado and or wind-borne debris regions (90 plus mph) having a building height less than 60 feet. (Rooftop structures; Section 6.5.15.1 of ASCE 7-10 design requirements apply)

3. FLOOD CONSIDERATIONS: This project has design requirements in accordance with FEMA and/or FIRM as follows:

a. None

B. General Design Performance Requirements

1. Design Wind Loads:

a. All outdoor mounted components shall be positively fastened to their supporting structure as discussed below. Fastening to metal deck is unacceptable.

 1) If component is curb mounted, article 7, Design Seismic Loads, paragraph g shall be followed for all roof-mounted components in excess of 9 sq. ft. in cross-sectional area. Curbs shall be as described in Base type B-3 if isolated, Base type B-4 if non-isolated.

 2) If component is support mounted, article 7, Design Seismic Loads, paragraph g shall be followed for all roof-mounted components requiring waterproofed rail supports. Equipment supports shall be Base type B-5 if isolated, Base type B-6 if non-isolated.

 3) If equipment is dunnage mounted, positive attachment shall occur through welding or bolting of equipment to dunnage steel.

b. Loads and calculations shall be based on IBC-2015, figure 1609 and related sections in ASCE 7-10.

c. Where buildings are less than or equal to 60 feet in height to the top of the roof slab (not parapet walls), the force on roof-mounted components shall be based on Section 6.5.15.1, ASCE 7-10.

d. Equivalent basic wind speed shall be based on IBC-2015, Table 1609.3.1.

e. In no event shall adjacent buildings, structures or screens be considered to diminish the calculated wind load or its effect on an outdoor component.

1.5 SUBMITTALS

A. Refer to Part 1, General.

B. Product Data: The manufacturer of vibration isolation, seismic, wind and flood restraints shall provide submittals for products as follows:

1. Descriptive Data:

a. Catalog cuts or data sheets on vibration isolators and specific restraints detailing compliance with the specification.

b. Detailed schedules of flexible and rigidly mounted equipment, showing vibration isolators and restraints by referencing numbered descriptive drawings.

2. Shop Drawings:

a. Submit fabrication details for equipment bases including dimensions, structural member sizes and support point locations.

b. Provide all details of suspension and support for ceiling hung equipment.
c. Provide specific details of restraints and anchors, include number, size and locations for each piece of equipment. Restraint and anchor allowables shall be by structural testing, shake testing, analysis or third party certification.

d. Calculations shall be submitted as required in Section 1.4, General Design and Performance Requirements.

1.6 QUALITY ASSURANCE

A. Manufacturer of vibration isolation and wind load control equipment or manufacturer’s approved representative shall have the following responsibilities:

1. Determine vibration isolation and restraint sizes and locations.

2. Provide vibration isolation and restraints as scheduled or specified.

3. Provide calculations and materials, if required, for restraint of non-isolated equipment.

4. Provide installation instructions in writing, drawings and trained field supervision, where necessary, to insure proper installation and performance.

5. Certify correctness of installation upon completion, in writing.

6. All provisions of Section 1.4, General Design and Performance Requirements.

B. All manufacturers of vibration control, wind or flood restraining systems must provide a Design Error and Omissions Insurance Certificate for their firm or their design consultant to certify their ability to provide engineering and design as required by this section. This document shall be provided at the time of first submittal from the restraint provider.

C. All manufacturers of any type of equipment including OEM are responsible for Section 1.4.

D. Equipment manufacturer’s substitution of internally or externally isolated and/or restrained equipment supplied by the equipment vendor, in lieu of the isolation and restraints specified in this section, is acceptable provided all conditions of this section are met.

E. All costs for converting to the specified vibration isolation and/or restraints shall be borne by the component vendor in the event of non-compliance with the preceding. Substitution of internal isolation is unacceptable.

1.7 RELATED WORK

A. Housekeeping pad structural design, including its attachment to building structure, shall be by the structural engineer of record or as shown on the contract drawings. Attachment of all components and restraints to the pad and size of the pad shall be designed and certified according to this section by the seismic/isolation supplier. Material and labor required for attachment and construction shall be by the concrete section contractor, or by the contractor where specified. Housekeeping pads shall be sized to accommodate a minimum 6” of clearance all around the equipment; or 12 times the outermost anchor bolt diameter, whichever is greater. Where exterior isolators are used, this distance shall be as measured from the outermost holes in the isolator base plate to the edge of the housekeeping pad.

B. The project’s structural engineer shall design all roof and interior steel to support and make connections to all components, including roof-mounted equipment specified in other sections. Design shall comply with IBC requirements including load path to structure.
C. Roof steel supporting roof-mounted equipment shall be designed for all wind forces including, but not limited to, tension, compression and moment loads.

D. Chimneys, stacks and boiler breeching passing through floors are to be attached at each floor level with a riser guide.

1.8 CODE AND STANDARDS REQUIREMENTS

A. Typical Applicable Codes and Standards

1. All City, State and Local Codes (Code)
 a. American Society For Testing and Materials (ASTM) (Standard)
 b. International Conference of Building Officials (ICBO) (Standard)
 c. International Building Code (Code)
 d. ASHRAE (Standard reference, to be used for design purposes only, not code).
 e. VISCMA (Vibration Isolation and Seismic Controls Manufacturers Association) (Standard reference, to be used for design purposes only, not code).

B. In cases where requirements vary, the guideline for the most stringent shall be utilized.

C. International Fire Code

D. Use IBC-2015 as reference code standard unless otherwise designated.

PART 2 - PRODUCTS

2.1 DESCRIPTION

A. All vibration isolators and seismic restraints described in this Section shall be the product of a single manufacturer. The basis of this specification is The VMC Group, including Vibration Mountings & Controls, Amber/Booth or Korfund Dynamics. Products from other nationally recognized manufacturers are acceptable provided their systems strictly comply with these specifications and have the approval of the specifying engineer. Manufacturer shall be a regular member of VISCMA (Vibration Isolation and Seismic Controls Manufacturers Association). See Form VL-1 listing other manufacturers to be considered for use on this project.

2.2 VIBRATION ISOLATION TYPES

A. Type A: Spring Isolator – Free Standing, A°

 1. Spring isolators shall be free standing and laterally stable without any housing and complete with a molded elastomeric cup or ¼" elastomeric acoustical friction pad between the bottom of isolator and the support.

 2. All mountings shall have leveling bolts that must be rigidly bolted to the equipment.

 3. Spring diameters shall be no less than 0.8” of the compressed height of the spring at rated load.
4. Springs shall have a minimum additional travel to solid equal to 50% of the operating deflection.

B. Type B: Wind Restrained Spring Isolator
MS, MSS, AEQM, ASCM, AMSR

1. Restrained spring mountings shall have a Type A spring isolator within a rigid housing that includes vertical limit stops to prevent spring extension if weight is removed. The housing shall serve as blocking during erection. A maximum clearance of $\frac{1}{4}$" shall be maintained around restraining bolts and internal elastomeric deceleration bushings. Limit stops shall be out of contact during normal operation. If housings are to be bolted or welded in position there must be an internal isolation pad or elastomeric cup. Housing shall be designed to resist all seismic forces.

C. Type C: Combination Spring/Elastomer Hanger Isolator (30° Type)
HRSA

1. Hangers shall consist of rigid steel frames containing minimum 1 $\frac{1}{4}$" thick elastomeric elements at the top and a steel spring with general characteristics as in Type A. The elastomeric element shall have resilient bushings projecting through the steel box.

2. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30° arc from side to side before contacting the rod bushing and short-circuiting the spring.

3. Submittals shall include a hanger drawing showing the 30° capability.

4. Hanger locations requiring pre-compression for holding piping at fixed elevation shall be type pre-compressed or pre-positioning for all manufacturers.

D. Type D: Elastomer Double Deflection Hanger Isolator
HR

1. Molded (minimum 1 $\frac{1}{4}$" thick) elastomeric element with projecting bushing lining the rod clearance hole. Static deflection at rated load shall be a minimum of 0.35".

2. Steel retainer box encasing elastomeric mounting capable of supporting equipment up to two times the rated capacity of the element.

E. Type E: Combination Spring/Elastomer Hanger Isolator
HRS

1. Spring and elastomeric elements in a steel retainer box with the features as described for Type C and D isolators.

2. Hanger locations requiring pre-compression for holding piping at fixed elevation shall be type pre-compressed or pre-positioning for all manufacturers.

3. 30° angularity feature is not required.

F. Type F: Wind Restrained Elastomer Floor Isolator
RSM, MB, RUD

1. Bridge-bearing elastomeric mountings shall have a minimum static deflection of 0.2" and all-directional seismic capability. The mount shall consist of a ductile iron or aluminum
casting containing molded elastomeric elements. The elements shall prevent the central threaded sleeve and attachment bolt from contacting the casting during normal operation. The shock-absorbing elastomeric materials shall be compounded to bridge-bearing or DuruleneTM specifications.

G. Type G: Pad Type Elastomer Isolator (Standard)
 Maxiflex
 1. One layer of ¾” thick elastomeric pad consisting of 2” square modules for size required.
 2. Load distribution plates shall be used as required.
 3. Bolting required for seismic compliance. Elastomeric and duck washers and bushings shall be provided to prevent short-circuiting.

H. Type H: Pad Type Elastomer Isolator (High Density)
 Fabri-Flex, NDB, NRC
 1. Laminated canvas duck and neoprene, maximum loading 1000 psi, minimum ½” thick.
 2. Load distribution plate shall be used as required.
 3. Bolting required for seismic compliance. Elastomeric and duck washers and bushings shall be provided to prevent short-circuiting.

I. Type I: Thrust Restraints
 RSHTR, TRK
 1. A spring element similar to Type A isolator shall be combined with steel angles, backup plates, threaded rod, washers and nuts to produce a pair of devices capable of limiting movement of air handling equipment to ¼” due to thrust forces. Contractor shall supply hardware.
 2. Thrust restraints shall be installed on all cabinet fan heads, axial or centrifugal fans whose thrust exceeds 10% of unit weight.

J. Type J: Pipe Anchors
 MDPA, AG
 1. All-directional acoustical pipe anchor, consisting of two sizes of steel tubing or piping separated by a minimum ½” thick 60 durometer elastomer.
 2. Vertical restraint shall be provided by similar material arranged to prevent vertical travel in either direction.
 3. Applied loads on the isolation material shall not exceed 500 psi and the design shall be balanced for equal resistance in any direction.

K. Type K: Pipe Guides
 PG/AG/SWP/SWX
 1. Pipe guides shall consist of a telescopic arrangement of two sizes of steel tubing or piping separated by a minimum ½” thickness of 60 durometer elastomer.
2. The height of the guides shall be preset with a shear pin to allow vertical motion due to pipe expansion or contraction. Shear pin shall be removable and replaceable to allow for selection of pipe movement.

3. Guides shall be capable of ±1 5/8" motion, or to meet location requirements.

L. Type L: Isolated Pipe Hanger System
 CIH, CIR, TIH, PIH
 1. Pre-compressed spring and elastomer isolation hanger combined with pipe support into one assembly. Replaces standard clevis, single or double rod roller, or double rod fixed support.
 2. Spring element (same as Type A) with steel lower spring retainer and an upper elastomer retainer cup with an integral bushing to insulate support rod from the isolation hanger.
 3. The elastomeric element under the lower steel spring retainer shall have an integral bushing to insulate the support rod from the steel spring retainer.
 4. Hangers shall be designed and constructed to support loads over three times the rated load without failure.
 5. Systems shall be pre-compressed to allow for rod insertion and standard leveling.

2.3 WIND RESTRAINT TYPES

A. Type I: Spring Isolator, Restrained
 MS, MSS, AEQM, ASCM, AMRS
 1. Refer to vibration isolation Type B.

B. Type II: Wind Restrained Elastomer Floor Isolator
 MB, RUD
 1. Refer to vibration isolation Type F.

C. Type III: All-Directional Wind Snubber
 SR, ER
 1. All-directional snubbers shall consist of interlocking steel members restrained by an elastomeric bushing. Bushing shall be replaceable and a minimum of ¼" thick. Applied loading shall not exceed 1000 psi. A minimum air gap of 1/8" shall be incorporated in the snubber design in all directions before contact is made between the rigid and resilient surfaces. Snubber end caps shall be removable to allow inspection of internal clearances. Elastomeric bushings shall be rotated to insure no short circuits exist before systems are activated.

D. Type IV: Floor or Roof Anchorage
 Cast-In Plates
 1. Rigid attachment to structure utilizing wedge type anchor bolts, anchored plates, machine screw, bolting or welding. Power shots are unacceptable.

2.4 EQUIPMENT BASES
A. General

1. All curbs and roof rails are to be bolted or welded to the building steel or anchored to the concrete deck (minimum thickness shall be 4") for resisting wind and seismic forces in accordance with the project location. (Fastening to metal deck is unacceptable.)

B. Base Types

1. Type B-1: Integral Structural Steel Base
 WFB, SFB, WSB
 a. Rectangular bases are preferred for all equipment.
 b. Centrifugal refrigeration machines and pump bases may be T or L shaped where space is a problem. Pump bases for split case and end suction pumps shall include supports for suction and discharge elbows.
 c. All perimeter members shall be structural steel beams with a minimum depth equal to 1/12 of the longest dimension between isolators.
 d. Base depth need not exceed 12" provided that the deflection and misalignment is kept within acceptable limits as determined by the manufacturer.
 e. Height saving brackets shall be employed in all mounting locations to provide a minimum base clearance of 2".

2. Type B-2: Concrete Inertia Base
 MPF, WPF, CPF
 a. Vibration isolation manufacturer shall furnish rectangular welded or bolted modular steel concrete pouring forms for floating and inertia foundations.
 b. Bases for split case and end suction pumps shall be large enough to provide for suction and discharge elbows.
 c. Bases shall be a minimum of 1/12 of the longest dimension between isolators but not less than 6".
 d. The base depth need not exceed 12" unless specifically recommended by the base manufacturer for mass or rigidity.
 e. Forms shall include a minimum concrete reinforcing consisting of 3/8" bars welded in place a maximum of 16" on centers running both ways in a layer 1 to 1½" above the bottom.
 f. Forms shall be furnished with steel templates to hold the component anchor bolts sleeves and anchors while concrete is being poured.
 g. Height saving brackets shall be employed in all mounting locations to maintain a 2" minimum operational clearance below the base.

3. Type B-3: Wind Load Isolation Curb
 P6200, P6300
 a. Option: Sound Package 1 & 2 VMC/AB-RPFMA/SRPFMA
 1) Curb-mounted rooftop equipment shown on isolation schedule shall be mounted on structural wind restrained spring isolation curbs. The upper frame must provide continuous support for the equipment and must be captive so as to resiliently resist wind load forces. The lower frame must accept point support for both wind load attachment and leveling. The upper frame must be designed with positive fastening provisions (welding or bolting), to anchor the rooftop unit to the curb, which will not violate the National Roofing Contractors Association (NRCA) ratings of the membrane waterproofing. Sheet metal screws are only acceptable if all provisions in Section 1.4, Article B, paragraph 7, Design Wind Loads, are met. Contact
points between the rooftop unit, the curb and the building's structure shall show load path through those locations only.

2) All-directional elastomeric snubber bushings shall be minimum of ¼" thick. Steel springs shall be laterally stable and rest on ¼" thick elastomeric acoustical pads or cups.

3) Hardware must be plated and the springs shall be powder-coated or cadmium-plated.

4) The curb’s waterproofing shall be designed to meet all NRCA requirements.

5) All spring locations shall have full spring view access ports with removable waterproof covers and all isolators shall be adjustable, removable and interchangeable.

6) Isolated curbs shall be supplied with a continuous air seal between the upper floating member and the stationary wood nailer.

4. Type B-4: Wind Load Non-Isolated Curbs

 P6000

 a. Option: Sound Package VMC-RPFMA/SRPFMA System

 1) Wind load curbs shall have all provisions as Type B-3 curbs with the exception of spring isolation.

 2) System shall be designed for positive anchorage or welding of equipment to supports and welding of supports to the building steel, capable of carrying the design wind loads.

5. Type B-5: Isolated Equipment Supports

 R7200/R7300

 a. Continuous structural equipment support rails that combine equipment support and isolation mounting into one unitized roof flashed assembly with all features as described for Type B-3.

 b. System shall be designed for positive anchorage or welding of equipment to supports and welding of supports to the building steel, capable of carrying the design wind loads.

6. Type B-6: Non-Isolated Equipment Supports

 R7000

 a. This shall have the same provisions as Type B-5 without the spring isolation.

7. Type B-8 AHU / AC unit Structural Base Frames

 a. Where roof mounted Air Conditioning or Air Handling Units are placed on steel platforms and are incapable of being point loaded or supported, structural frames shall be furnished which will either match the centerline dimensions of the unit’s base frame rail or its curb dimensions. The structural frame shall have provisions to be welded or bolted to the unit’s base frame and shall be supported on type “B” wind restrained isolation system.

 b. Isolator deflection shall be either 1.5” or 2.5” depending on the tonnage of the roof mounted component as shown in Isolation Table “A”. Structural Base Frame shall be type RTSBF as manufactured by The VMC Group.

2.5 FLEXIBLE CONNECTORS

 A. Type FC-2: Flexible Stainless Steel Hose
SS-FP, SS-FW, SS-PM, SS-WE

1. Flexible stainless steel hose shall have stainless steel braid and carbon steel fittings. Sizes 3” and larger shall be flanged. Smaller sizes shall have male nipples.

B. Type BC-2 connector shall be braided bronze for Freon connections.

1. Minimum lengths shall be as tabulated:

<table>
<thead>
<tr>
<th>Flanged</th>
<th>Male Nipples</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 14</td>
<td>½ x 9</td>
</tr>
<tr>
<td>4 x 15</td>
<td>¾ x 10</td>
</tr>
<tr>
<td>5 x 19</td>
<td>1 ½ x 13</td>
</tr>
<tr>
<td>6 x 20</td>
<td>1 ¼ x 12</td>
</tr>
<tr>
<td>10 x 26</td>
<td>2 x 14</td>
</tr>
<tr>
<td>14 x 30</td>
<td>2 ½ x 18</td>
</tr>
<tr>
<td>16 x 32</td>
<td>8 x 22</td>
</tr>
</tbody>
</table>

2. Hoses shall be installed on the equipment side of the shut-off valves horizontally and parallel to the equipment shafts wherever possible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. All areas that will receive components requiring vibration control or wind load bracing shall be thoroughly examined for deficiencies that will affect their installation or performance. Such deficiencies shall be corrected prior to the installation of any such system.

B. Examine all "rough ins" including anchors and reinforcing prior to placement.

3.2 APPLICATIONS

A. All vibration isolators and wind restraint systems must be installed in strict accordance with the manufacturer’s written instructions and all certified submittal data.

B. Installation of vibration isolators and wind restraints must not cause any change of position of equipment, piping or ductwork resulting in stresses or misalignment.

C. No rigid connections between equipment and the building structure shall be made that degrades the noise and vibration control system specified herein.

D. The contractor shall not install any isolated components in a manner that makes rigid connections with the building unless isolation is not specified. "Building" includes, but is not limited to, slabs, beams, columns, studs and walls.

E. Coordinate work with other trades to avoid rigid contact with the building.

F. Overstressing of the building structure must not occur due to overhead support of equipment. Contractor must submit loads to the structural engineer of record for approval. General bracing may occur from flanges of structural beams, upper truss cords in bar joist construction and cast in place inserts or wedge type drill-in concrete anchors.

G. Vibration isolation manufacturer shall furnish integral structural steel bases as required. Independent steel rails are not permitted.
H. Air handling equipment and centrifugal fans shall be protected against excessive displacement which results from high air thrust in relation to the equipment weight. Horizontal thrust restraints shall be those described in the specification when horizontal motion exceeds 3/8.”

3.3 EQUIPMENT INSTALLATION

A. Equipment shall be isolated and/or restrained as per Tables A-E at the end of this section.

B. Place floor mounted equipment on 4” actual height concrete housekeeping pads properly sized and doweled or expansion shielded to the structural deck. Anchor isolators and/or bases to housekeeping pads. Concrete work is specified under that section of the contract documents.

C. Additional Requirements:

1. The minimum operating clearance under all isolated components bases shall be 2.”

2. All bases shall be placed in position and supported temporarily by blocks or shims, as appropriate, prior to the installation of the equipment, isolators and restraints.

3. All components shall be installed on blocks to the operating height of the isolators. After the entire installation is complete and under full load including water, the isolators shall be adjusted so that the load is transferred from the blocks to the isolators. Remove all debris from beneath the equipment and verify that there are no short circuits of the isolation. The equipment shall be free to move in all directions, within the limits of the restraints.

4. All floor or wall-mounted equipment and tanks shall be restrained with Type V restraints.

3.4 PIPING AND DUCTWORK ISOLATION

A. Vibration Isolation of Piping:

1. HVAC Water Piping: All spring type isolation hangers shall be pre-compressed or pre-positioned if isolators are installed prior to fluid charge. If installed afterwards, field pre-compressed isolators can be used. All HVAC piping in the machine room shall be isolated as well as pressurized runs in other locations of the building 6” and larger. Type E hangers shall isolate horizontal pressurized runs in all other locations of the building. Floor supported piping shall rest on Type B isolators. Heat exchangers and expansion tanks are considered part of the piping run. The first 3 isolators from the isolated equipment shall have at least the same static deflection as specified for the mountings under the connected equipment. If piping is connected to equipment located in basements and hangs from ceilings under occupied spaces, the first 3 hangers shall have 0.75” nominal deflection or greater for pipe sizes up to and including 3,” 1 3/8” nominal deflection or greater for pipe sizes greater than 3.” Where column spacing exceeds 35’, isolation hanger deflection shall be 2½” for pipes exceeding 3” diameter. Type L hangers may be substituted for the above where isolation hangers are required.

2. Plumbing Water Lines: Plumbing water lines in the machine room shall only be isolated if connected to isolated equipment. (See Table B.) Isolator type shall be as listed in Article 1, above.
3. Riser Location: All risers shall be supported on Type J or K anchors or guide restraints positively attached to both the riser and structure. Spiders welded to the pipe can substitute for Type K guides using J Type anchors.

4. Gas lines shall not be isolated.

5. Fire protection lines shall not be isolated.

B. Vibration Isolation of Ductwork:

1. All discharge runs for a distance of 50' from the connected equipment shall be isolated from the building structure by means of Type A or Type E isolators. Actual spring deflection shall be a minimum of 0.75.”

2. All duct runs having air velocity of 1500 feet per minute (fpm) or more shall be isolated from the building structure by Type E combination spring elastomer hangers or Type A floor spring supports. Spring deflection shall be a minimum of 0.75.”

3.5 FIELD QUALITY CONTROL, INSPECTION

A. All Independent Special and Periodic Inspections must be performed and submitted on components as outlined in Section 1.4 B, Article 4. (See also Contractor Responsibility, Section 1.4B, Article 5.) Note: Special inspection services are to be supplied by the owner.

B. Upon completion of installation of all vibration isolation devices, the manufacturer’s chosen representative shall inspect the completed project and certify in writing to the Contractor that all systems are installed properly, or list any that require correction. The contractor shall submit a report to the Architect, including the representative’s report, certifying correctness of the installation or detailing corrective work to be done.

PART 4 - SELECTION GUIDE FOR VIBRATION ISOLATION AND WIND RESTRAINTS

<table>
<thead>
<tr>
<th>EQUIPMENT (See Notes)</th>
<th>ON GRADE, BASEMENT OR SLAB ON GRADE</th>
<th>ABOVE GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/Type</td>
<td>Mtg</td>
<td>Isol</td>
</tr>
<tr>
<td>Absorption Machine</td>
<td>Floor</td>
<td>---</td>
</tr>
<tr>
<td>Air Handling Units</td>
<td>Floor</td>
<td>A</td>
</tr>
<tr>
<td>Indoor</td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Air Compressor, Tank</td>
<td>To 10 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>or Floor Mounted</td>
<td>>10 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>Dry Coolers Outdoor Condensing Units/Condensers</td>
<td>Roof</td>
<td>---</td>
</tr>
<tr>
<td>Axial Fans (Inline Type)</td>
<td>Floor</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Base Mounted Pumps</td>
<td>To 15 HP</td>
<td>Floor</td>
</tr>
<tr>
<td></td>
<td>>15 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>Boilers</td>
<td>Floor</td>
<td>G</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>To 1 HP</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td>Ceiling</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>>1 HP</td>
<td>Floor</td>
<td>A</td>
</tr>
<tr>
<td>Ceiling</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cabinet Fans & Packaged AHU Indoor</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td>Ceiling</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Centrifugal Chillers</td>
<td>Floor</td>
<td>B</td>
</tr>
<tr>
<td>Centrifugal Fans Arr. 1 & 3</td>
<td>Class 1</td>
<td>Floor</td>
</tr>
<tr>
<td>Class 2 & 3</td>
<td>Floor</td>
<td>A</td>
</tr>
<tr>
<td>Centrif. Fans (Vent Sets) Arr. 9 & 10</td>
<td>Class 1</td>
<td>Floor</td>
</tr>
<tr>
<td>Class 2 & 3</td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Computer Room Units</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE "A" HVAC EQUIPMENT (Continued)

<table>
<thead>
<tr>
<th>On Grade, Basement or Slab on Grade</th>
<th>Above Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensate Pumps</td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>Floor</td>
</tr>
<tr>
<td>Curb Mtd. Equip. (Non-Isol.)</td>
<td>Roof</td>
</tr>
<tr>
<td>Fan Coil Units</td>
<td>Floor</td>
</tr>
<tr>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Outdoor Reciprocating, Rotary or Screw Chillers</td>
<td>Floor</td>
</tr>
<tr>
<td>Rooftop AHU/AC (curb mounted)</td>
<td>Roof</td>
</tr>
<tr>
<td>< 10 Ton</td>
<td></td>
</tr>
<tr>
<td>> 10 Ton</td>
<td></td>
</tr>
<tr>
<td>Rooftop AHU/AC (dunnage mounted)</td>
<td>Roof</td>
</tr>
<tr>
<td>< 10 Ton</td>
<td></td>
</tr>
<tr>
<td>> 10 Ton</td>
<td></td>
</tr>
</tbody>
</table>

See Minimum Deflection Guide for Equipment with Low RPM

TABLE "B" PLUMBING EQUIPMENT

<table>
<thead>
<tr>
<th>On Grade, Basement or Slab on Grade</th>
<th>Above Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT (See Notes)</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>Mtg</td>
</tr>
<tr>
<td>Air Compressors & Vacuum Pumps</td>
<td>Up to 10</td>
</tr>
<tr>
<td></td>
<td>Over 10</td>
</tr>
<tr>
<td>Base Mounted Pumps</td>
<td>Up to 15</td>
</tr>
<tr>
<td></td>
<td>Over 15</td>
</tr>
</tbody>
</table>
Where Component cannot be point supported, Base Type B-1 shall be used.

Minimum Deflection Guide for Equipment with Low RPM

<table>
<thead>
<tr>
<th>Lowest RPM of Rotating Equipment</th>
<th>Minimum Actual Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than 400</td>
<td>3.5”</td>
</tr>
<tr>
<td>401 thru 600</td>
<td>2.5”</td>
</tr>
<tr>
<td>601 thru 900</td>
<td>1.5”</td>
</tr>
<tr>
<td>Greater than 900</td>
<td>0.75”</td>
</tr>
</tbody>
</table>

4.1 General Notes for All Tables:

1. Abbreviations:
 (1) Mtg = Mounting
 (2) ol = Vibration Isolator Type per Section 2.2, Vibration Isolation Types
 (3) Defl = Minimum Deflection of Vibration Isolator
 (4) Base = Base Type per Section 2.4, Equipment Bases
 (5) Restr = Seismic Restraint Type per Section 2.3 Seismic Restraint Types

2. All deflections indicated are in inches.

3. For equipment with variable speed driven components having driven operating speed below 600 rpm, select isolation deflection from minimum deflection guide.

4. For roof applications, use base Type B-5.

5. Units may not be capable of point support. Refer to separate air handling unit specification section. If that section does not provide base and external isolation is required, provide Type B-1 base by this section for entire unit.

6. Static deflection shall be determined based on the deflection guide for Table “A.”

7. Deflections indicated are minimums at actual load and shall be selected for manufacturer’s nominal 5,” 4,” 3,” 2” and 1” deflection spring series; RPM is defined as the lowest operating speed of the equipment.
8. Single stroke compressors may require inertia bases with thicknesses greater than 14” maximum as described for base B-2. Inertia base mass shall be sufficient to maintain double amplitude for 1/8.”

9. Floor mounted fans, substitute base Type B-2 for class 2 or 3 or any fan having static pressure over 5.”

10. Indoor utility sets with wheel diameters less than 24” need not have deflections greater than .75.”

11. Curb-mounted fans with curb area less than 9 square feet are excluded.

12. For equipment with multiple motors, Horsepower classification applies to largest single motor.

END OF SECTION 23 05 48
SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.
5. Valve tags.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.3 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Stainless steel, 0.025-inch, Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red. Unless otherwise directed by owner

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS
A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
C. Background Color: Blue.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.
2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule:
 1. Hot-Water Piping:
a. Background Color: Red.

2. Refrigerant Relief Piping:
 a. Background Color: Black.

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated or self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 3. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 a. Refrigerant: 1-1/2 inches, square.
 c. Gas: 1-1/2 inches, square.

2. Valve-Tag Color:
 a. Refrigerant: Natural.
 b. Hot Water: Natural.
 c. Gas: Natural.

3. Letter Color:
 a. Refrigerant: Black.
 b. Hot Water: Black.
 c. Gas: Black.

END OF SECTION 230553
SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-volume air system.

2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.

3. Testing, Adjusting, and Balancing Equipment:
 a. Heat exchangers.
 b. Motors.
 c. Air Cooled condensing units
 d. Boilers.
 e. Heat-transfer coils.

4. Testing, adjusting, and balancing existing systems and equipment.

5. Duct leakage tests.

1.3 DEFINITIONS

B. BAS: Building automation systems.

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.4 INFORMATIONAL SUBMITTALS
B. Certified TAB reports.

1.5 QUALITY ASSURANCE
A. TAB Specialists Qualifications: Certified by AABC, NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB or TABB.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB or TABB as a TAB technician.
B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, “Instrumentation.”
C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - “Air Balancing.”
D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - “System Balancing.”

1.6 FIELD CONDITIONS
A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner’s operations.
B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner’s operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify
that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers’ startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers’ startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC’s "National Standards for Total System Balance" ASHRAE 111 NEBB’s "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA’s "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230716 "Mechanical Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer’s outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems’ “as-built” duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.

 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.

 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
a. Measure static pressure directly at the fan outlet or through the flexible connection.
b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets (including chilled beam) for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.

1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.

2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

3. Measure total system airflow. Adjust to within indicated airflow.

4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.

5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.

 a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.

6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.

 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.

8. Record final fan-performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:

 1. Open all manual valves for maximum flow.
 2. Check expansion tank pressure setting.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.
3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:

1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.

a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Engineer and comply with requirements in Division 23 Section "Hydronic Pumps."

2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.

a. Monitor motor performance during procedures and do not operate motors in overload conditions.

3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.

1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:

1. Determine the balancing station with the highest percentage over indicated flow.
2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer’s name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.10 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.11 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:
1. Dry-bulb temperature of entering and leaving air.
2. Airflow.
3. Inlet steam pressure.

D. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.

3.12 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to be removed.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor, speed, voltage and amperage. Compare the values to motor nameplate information.
 3. Measure external and total static pressure.
 4. Provide pre-tab for the following existing equipment;
 b. All air devices associated with VAV's-19, 20 & 21.

B. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
 4. Balance each air outlet.

3.13 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 3. Verify that controllers are calibrated and function as intended.
 4. Verify that controller set points are as indicated.
 5. Verify the operation of lockout or interlock systems.
 6. Verify the operation of valve and damper actuators.
 7. Verify that controlled devices are properly installed and connected to correct controller.
 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.14 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent.
4. Cooling-Water Flow Rate: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.15 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.16 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers’ test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Rooftop/Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower, BHP and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg.
 h. Water flow rate in gpm (L/s).
 i. Water pressure differential in feet of head or psig.
 j. Entering-water temperature in deg F.
 k. Leaving-water temperature in deg F.
 l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower, BHP and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

I. Air-Terminal-Device Reports:

1. Unit Data:
a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
b. Air velocity in fpm.
c. Preliminary airflow rate as needed in cfm.
d. Preliminary velocity as needed in fpm.
e. Final airflow rate in cfm.
f. Final velocity in fpm.
g. Space temperature in deg F.

3. Test Data (Indicated and Actual Values):
 a. Operating pressure in psig.
b. Operating temperature in deg F.
c. Entering-water temperature in deg F.
d. Leaving-water temperature in deg F.
e. Burner oil flow.
f. Burner pump set flow.

J. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
b. Serial number.
c. Application.
d. Dates of use.
e. Dates of calibration.

3.17 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes mechanical insulation for duct, equipment, and pipe including the following:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
2. Insulating cements.
3. Adhesives.
5. Sealants.
6. Factory-applied jackets.
8. Field-applied jackets.
10. Securements.
11. Corner angles.

B. Related Sections include the following:

1. Division 23 Section "Metal Ducts" for material and liner requirements.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show details for the following:

1. Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Attachment and covering of heat tracing inside insulation.
3. Insulation application at pipe expansion joints for each type of insulation.
4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Removable insulation at piping specialties, equipment connections, and access panels.
6. Application of field-applied jackets.
7. Application at linkages of control devices.
8. Field application for each equipment type.

C. Field quality-control inspection reports.
1.3 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

B. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

C. Insulation products shall carry ISO 9000/9001/9002 certification or guaranteed to meet the ISO standards.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 DEFINITIONS

A. Exposed: Piping located in mechanical equipment rooms and in indoor areas which will be visible without removing ceilings or opening access panels.

B. Concealed: Indoor piping which is not exposed.

C. Outdoor: Piping which is exposed to the weather.

D. Underground: Piping which is buried; whereas piping located in a trench below grade is considered concealed.

1.6 REFERENCE STANDARDS

A. Published specifications standards, tests or recommended methods of trade, industry or governmental organizations apply to work in this Section.

B. Comply with all applicable national, state and local codes and refer to specification 230500 Common Work Results for HVAC for additional reference standards.
2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Products: Subject to compliance with requirements, provide one of the products specified.

2.2 INSULATION MATERIALS

A. Refer to Part 3 schedule articles for requirements about where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

D. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials. Thermal conductivity (k-value) at 75 deg F is 0.25 Btu x in./h x sq. ft. x deg F or less.

1. Available Products:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
 d. Or approved equivalent.

E. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in Part 2 “Factory-Applied Jackets” Article.

1. Available Products:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; All-Service Duct Wrap.
 f. Or approved equivalent.

F. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied ASJ. Thermal conductivity (k-value) at 100 deg F is 0.24 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in Part 2 “Factory-Applied Jackets” Article.

1. Available Products:
a. CertainTeed Corp.; Commercial Board.
b. Fibrex Insulations Inc.; FBX.
c. Johns Manville; 800 Series Spin-Glas.
d. Knauf Insulation; Insulation Board.
e. Manson Insulation Inc.; AK Board.
f. Owens Corning; Fiberglas 700 Series.
g. Or approved equivalent.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Available Products:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000 Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
 f. Or approved equivalent.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

2.3 INSULATING CEMENTS

A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

1. Available Products:
 a. Insulco, Division of MFS, Inc.; SmoothKote.
 c. Rock Wool Manufacturing Company; Delta One Shot.
 d. Or approved equivalent.

2.4 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Available Products:
 a. Aeroflex USA Inc.; Aeroseal.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive.
 e. Or approved equivalent.
C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Available Products:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 f. Or approved equivalent.

1. Available Products:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 f. Or approved equivalent.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Available Products:
 a. Dow Chemical Company (The); 739, Dow Silicone.
 e. Speedline Corporation; Speedline Vinyl Adhesive.
 f. Or approved equivalent.

2.5 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates: Comply with MIL-C-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.

1. Available Products:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.
 g. Or approved equivalent.

2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Available Products:
 a. Childers Products, Division of ITW; CP-10.
 b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 e. Mon-Eco Industries, Inc.; 55-50.
 f. Vimasco Corporation; WC-1/WC-5.
 g. Or approved equivalent.

2. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.

3. Service Temperature Range: Minus 20 to plus 200 deg F.
4. Solids Content: 63 percent by volume and 73 percent by weight.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Available Products:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
 f. Or approved equivalent.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.

B. ASJ Flashing Sealants, and Vinyl, and PVC Jacket Flashing Sealants:

1. Available Products:
 a. Childers Products, Division of ITW; CP-76.
 b. Mon-Eco Industries, Inc.
 c. Vimasco Corporation.
 d. Or approved equivalent.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Available Products:
 a. Johns Manville; Zeston.
 c. Proto PVC Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e. Or approved equivalent.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.

D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.

1. Available Products:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.
 d. Or approved equivalent.

2. Factory cut and rolled to size.
3. Finish and thickness are indicated in field-applied jacket schedules.
5. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
6. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

E. Self-Adhesive Outdoor Jacket: 60-mil thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.

 1. Available Products:
 a. Polyguard; Alumaguard 60.
 b. Or approved equivalent.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136 and UL listed.

 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136 and UL listed.

 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.

 1. Width: 2 inches.
 2. Thickness: 6 mils.
 3. Adhesion: 64 ounces force/inch in width.
4. Elongation: 500 percent.
5. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal.

B. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 1. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 2. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 3. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

C. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 1. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 2. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 3. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

D. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 1. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 2. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 3. Adhesive-backed base with a peel-off protective cover.

E. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 1. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
F. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

G. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

H. Wire: 0.062-inch soft-annealed, stainless steel.

2.11 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 COMMON INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation with tightly butted joints free of voids and gaps. Vapor barriers shall be continuous. Before installing jacket material, install vapor-barrier system.

C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

E. Install insulation with longitudinal seams at top and bottom of horizontal runs.

F. Install multiple layers of insulation with longitudinal and end seams staggered.

G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

H. Keep insulation materials dry during application and finishing.

I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

J. Install insulation with least number of joints practical.

K. Hangers and Anchors: Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

M. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

Q. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches. Seal penetration with firestopping materials to match existing fire rating.

F. Insulation Installation at Floor Penetrations:
1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Pipe: Install insulation continuously through floor penetrations.

3. Seal penetrations through fire-rated assemblies with firestopping materials to match existing fire rating.

3.5 DUCT AND PLENUM INSULATION INSTALLATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

 d. Do not overcompress insulation during installation.

 e. Impale insulation over pins and attach speed washers.

 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows.
6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 PIPE INSULATION INSTALLATION

A. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
B. Secure single-layer insulation with bands at 12-inch intervals and tighten bands without deforming insulation materials.

C. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with bands at 12-inch intervals.

D. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

E. Cover segmented insulated surfaces with a layer of insulating cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

F. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

G. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

H. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed insulation to pipe with wire or bands and tighten bands without deforming insulation materials. Orient longitudinal joints between half sections in 3 and 9 o'clock positions on the pipe.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets with vapor barriers, do not staple longitudinal tabs but secure tabs with additional adhesive or tape as recommended by insulation material manufacturer and seal with vapor-barrier mastic.
 5. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

I. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of same insulation material and thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
 5. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

J. Insulation Installation on Pipe Fittings and Elbows:
1. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

2. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. But each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

K. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

4. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

5. Install insulation to flanges as specified for flange insulation application.

L. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

M. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

N. Special Installation Requirements for Flexible Elastomeric and Polyolefin Insulation:

1. Seal longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

2. Insulation Installation on Pipe Flanges:
 a. Install pipe insulation to outer diameter of pipe flange.
 b. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 c. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 d. Secure insulation to flanges and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3. Insulation Installation on Pipe Fittings and Elbows:
 a. Install mitered sections of pipe insulation.
 b. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:

 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer’s recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-retarder mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer’s recommended adhesive.

 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints. Provide metal jackets for all outdoor piping.

3.8 FINISHES

A. Duct and Pipe Insulation with ASJ or Other Paintable Jacket Material:
1. Apply two finish coats of interior, flat, latex-emulsion size over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Owner. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum jackets.

3.9 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Inspect ductwork, randomly selected by Engineer or Construction Manager, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

2. Inspect pipe, fittings, strainers, and valves, randomly selected by Engineer or Construction Manager, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. Remove defective Work.

C. Install new insulation and jackets to replace insulation and jackets removed for inspection. Repeat inspection procedures after new materials are installed.

3.10 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Outdoor, concealed supply and return.
2. Outdoor, exposed supply and return.

B. Items Not Insulated:

1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.
8. Refrigerant exhaust duct.
3.11 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option. Refer to Division 23 Section “Metal Ducts” and contract drawings for systems requiring duct liner.

B. Supply-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 3-lb/cu. ft. nominal density.

C. Return-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 3-lb/cu. ft. nominal density.

D. Outdoor-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 3-lb/cu. ft. nominal density.

E. Exhaust-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 3-lb/cu. ft. nominal density.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Exposed, Return-Air Duct and Plenum Insulation: Mineral-fiber board, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Exposed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches thick and 1.5-lb/cu. ft. nominal density.

3.13 ABOVEGROUND, OUTDOOR

3.14 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Fire-suppression piping.
2. Drainage piping located in crawl spaces.
4. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.15 INDOOR AND OUTDOOR PIPING INSULATION SCHEDULE

A. Indoor condensate and equipment drain piping (including all HVAC equipment, cooling coil condensate, etc.): Mineral-Fiber pipe insulation, Type I, 1 inch thick or 1” flexible elastomeric

B. Refrigerant Suction and Liquid Piping: Insulation shall be the following:
 1. Flexible elastomeric, 1 inch thick.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums:
 1. VentureClad Jacketing System, or approved equivalent, for outdoor application.

D. Piping:
 1. PVC, 40 mils thick.

END OF SECTION 23 07 00
SECTION 23 07 02 – ACOUSTICAL LINING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: The work covered by this specification consists of furnishing all labor, equipment, materials and accessories, and performing all operations required for the correct fabrication and installation of commercial air distribution ductwork of rectangular sheet metal lined with fibrous glass duct liner, in accordance with applicable project drawings and specifications, subject to the terms and conditions of the contract.

B. Related Sections:
 Section 230700 – Duct Insulation
 Section 233113 – Metal Ducts
 Section 233300 – Duct Accessories

C. Measurement Procedures: Dimensions shown on the plans are inside dimensions.

1.2 REFERENCES

A. ASHRAE 90.1-89 - Energy Efficient Design of New Buildings

B. ASTM C 423 Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

C. ASTM C 916 - Specification for Adhesives for Duct Thermal Insulation

D. ASTM C 1071 Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound) Absorbing Material

E. ASTM D 5116 Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products

F. ASTM E 84 - Test Method for Surface Burning Characteristics of Building Materials

G. ASTM G 21 Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi

H. ASTM G 22 Practice for Determining Resistance of Plastics to Bacteria

I. NAIMA AH122 Cleaning Fibrous Glass Insulated Air Duct Systems

J. NAIMA AH124 Fibrous Glass Duct Liner Standard

K. NFPA 90A - Standard for the Installation of Air Conditioning and Ventilating Systems

L. NFPA 90B - Standards for the Installation of Warm Air Heating and Air Conditioning Systems

M. NFPA 255 - Method of Test of Surface Burning Characteristics of Building Materials

N. SMACNA HVAC Duct Construction Standards Metal and Flexible

O. UL 181 Factory-Made Air Ducts and Air Connectors

P. UL 723 - Test for Surface Burning Characteristics of Building Materials
1.3 SUBMITTALS

A. Product Data: Provide product description, list of materials and thickness and manufacturer’s installation instructions for each duct or equipment to be insulated.

B. Shop Drawings: Submit list of insulation to be used, and include installation details for all ducts or equipment to be insulated.

C. Samples: Submit samples of each insulation to be used.

1.4 QUALITY ASSURANCE

A. Insulation materials shall be manufactured at facilities certified and registered with an approved registrar to conform to the ISO 9002 Quality Standard.

B. All work shall conform to accepted industry and trade standards for commercial and industrial insulations, and shall conform with manufacturers recommendations.

C. Installation shall be by licensed applicators.

D. Insulation materials that have become wet or contaminated shall not be installed.

E. Verify that insulation of the proper thickness and R value, meeting ASHRAE 90.1 and/or local requirements is to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver all materials (insulation, coverings, cements, adhesives, coatings, etc.) to the job site in factory containers with manufacturer’s label showing manufacturer, product name and product fire hazard information.

B. Protect the insulation from dirt, water, chemical attack and mechanical damage before, during and after installation.

C. Installed duct will have openings capped to prevent entry of dirt or water Project/Site Conditions

D. Maintain job site temperature and conditions, before, during and after installation, as required by the manufacturers of insulation, adhesives and coatings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Duct Liner: Provide product by Johns Manville Linacoustic RC or other alternate manufacturers as listed below or approved equal.

B. SuperSeal HV, Edge Treatment and Duct Butter coating products: Provide product by Johns Manville or other alternate manufacturers as listed below or approved equal.

C. Alternate manufacturers:
 1. Knauf Quiet R.
 2. Owens-Corning E-M.
 3. Or approved equal.

2.2 MATERIALS
A. Linacoustic RC meeting ASTM C1071, Type I, and meeting the following requirements:

1. Minimum R, hr-ft2-F/ BTU as follows:

<table>
<thead>
<tr>
<th>Thickness (in.)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>1-1/2</td>
<td>6.3</td>
</tr>
<tr>
<td>2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

2. Minimum Noise reduction coefficient when tested in accordance with ASTM C423 using a type “A” mounting as follows:

<table>
<thead>
<tr>
<th>Thickness (in.)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>0.55</td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
</tr>
<tr>
<td>1-1/2</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>0.90</td>
</tr>
</tbody>
</table>

3. Rated maximum air velocity of 6000 fpm when tested in accordance with UL 181.
4. The air stream surface shall have 100% coverage of an acrylic polymer coating formulated with an immobilized EPA registered preservative proven resistant to microbial growth as determined by ASTM G21 and G22.
5. Duct liner shall have a flame spread no greater than 25 and a smoke developed no greater than 50 when tested as a composite in accordance with ASTM E 84, UL 723 or NFPA 255.
6. Duct liner shall be classified as meeting the requirements of limited combustibility per NFPA 90A.
7. Duct liner shall conform to the State of Washington Building Services Department requirements for emissions of total volatile organic compounds (TVOC) and formaldehyde (CHOH) in accordance with ASTM D5116-90.

B. Accessories

1. SuperSeal HV, Edge Treatment and Duct Butter coating products
2. Duct liner adhesive, meeting the requirements of ASTM C 916.
3. Weld pins of sufficient finished length to provide proper compression of insulation.
4. Metal channel or “Z” profile for upstream edges of liner.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that it is physically possible to install Linacoustic RC in accordance with project drawings, operation performance parameters and SMACNA/NAIMA standards.

3.2 INSTALLATION

A. All work activities shall be conducted in accordance with all applicable federal, state and local codes and laws. This shall include, but not be limited to, the Occupational Safety and Health Act.

B. All portions of duct designated to receive an acoustical liner as shown on plans and as listed below shall be completely covered with 1" min. thickness of Linacoustic RC. All sections shall be tightly butted together so that there are no interruptions or gaps. Portions of duct that are internally lined will not require any external wrap insulation, providing the thermal characteristics of the liner are equal to or greater than the external insulation specified elsewhere.

<table>
<thead>
<tr>
<th>Duct Application</th>
<th>Thickness (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftop Supply Air Duct (First 25 Linear Feet)</td>
<td>1"</td>
</tr>
<tr>
<td>Rooftop Return Air Duct (First 25 Linear Feet)</td>
<td>1"</td>
</tr>
</tbody>
</table>

C. Liner shall be installed in accordance with manufacturer's installation instructions, NAIMA AH124 Fibrous Glass Duct Liner Standard and SMACNA HVAC Duct Construction Standards Metal and Flexible.

D. The black, acrylic coated side of the liner shall face the air stream.

E. Liner shall be cut to assure tight overlapped corner joints. Top pieces shall be supported by edge pieces.

F. All transverse liner edges created by shop or field cuts shall be liberally coated with Super Seal Edge Treatment, Superseal Duct Butter, or duct liner adhesive meeting ASTM C 916.

G. Adhere liner to metal with minimum 90% coverage of adhesive meeting ASTM C 916.

H. Secure duct liner with mechanical fasteners that comply with the requirements in SMACNA HVAC Duct Construction Standards Metal and Flexible:

<table>
<thead>
<tr>
<th>Maximum Fastener Spacing in Inches</th>
<th>0-2500 FPM Velocity</th>
<th>2501-5000 FPM Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing from Wall</td>
<td>4"</td>
<td>4"</td>
</tr>
<tr>
<td>Spacing Between Fasteners</td>
<td>12"</td>
<td>6"</td>
</tr>
<tr>
<td>Longitudinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing from Liner Edge</td>
<td>3"</td>
<td>3"</td>
</tr>
<tr>
<td>Spacing Between Fasteners</td>
<td>18"</td>
<td>16"</td>
</tr>
</tbody>
</table>

I. Install metal nosing on all leading edges of liner wherever liner is preceded by unlined duct, at forward discharge, and when velocity exceeds 4000 fpm.
J. SuperSeal HV will be used to fill minor gaps and indentations, and to repair minor surface damage that extends to no more than 10% of the liner thickness.

3.3 FIELD QUALITY CONTROL

A. Upon completion of installation of the duct liner and before HVAC system start-up, visually inspect the ductwork and verify that the duct liner has been correctly installed.

B. Confirm that any damage to the air stream surface has been properly repaired and that the duct is free from obstructions or debris.

C. After the system is completely installed and ready for service, conduct an inspection of the entire system. This inspection should include, as a minimum, the following steps:

1. Check all registers, grilles, and diffusers to insure they are clean and free from construction debris.
2. Check all filters in accordance with manufacturers instructions. Use specified grade of filters at all times system is operating.
3. Cover supply openings with filter media prior to system start-up to catch any loose material that may remain inside the ductwork.
4. Turn on the HVAC system and allow it to run until steady state operation is reached.
5. Remove the temporary filter media from supply openings and along with it any loose material trapped by the media.
6. Check to ensure that air delivery performance meets all requirements.

3.4 CLEANING

A. Cleaning of lined duct, if required, shall be done in accordance with NAIMA recommended practice contained in publication AH122 “Cleaning Fibrous Glass Insulated Air Duct Systems”.

END OF SECTION 230702
SECTION 23 09 00 - HVAC INSTRUMENTATION AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

B. Related Sections include the following:

1. Division 23 Section "Meters and Gages" for measuring equipment that relates to this Section.
2. Division 23 Section "Sequence of Operation" for requirements that relate to this Section.

1.3 DEFINITIONS

A. DDC: Direct digital control.

B. I/O: Input/output.

C. BACnet: A control network technology platform for designing and implementing interoperable control devices and networks.

D. MS/TP: Master slave/token passing.

E. PC: Personal computer.

F. PID: Proportional plus integral plus derivative.

G. RTD: Resistance temperature detector.

1.4 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 a. Water Temperature: Plus or minus 1 deg F.
 b. Water Flow: Plus or minus 5 percent of full scale.
 c. Water Pressure: Plus or minus 2 percent of full scale.
 d. Space Temperature: Plus or minus 1 deg F.
 e. Ducted Air Temperature: Plus or minus 1 deg F.
 f. Outside Air Temperature: Plus or minus 2 deg F.
 g. Dew Point Temperature: Plus or minus 3 deg F.
 h. Temperature Differential: Plus or minus 0.25 deg F.
 i. Relative Humidity: Plus or minus 5 percent.
 j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 l. Airflow (Terminal): Plus or minus 10 percent of full scale.
 m. Air Pressure (Space): Plus or minus 0.01-inch wg.
 n. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 o. Carbon Dioxide: Plus or minus 50 ppm.
 p. Electrical: Plus or minus 5 percent of reading.

1.5 SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.

1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
4. Details of control panel faces, including controls, instruments, and labeling.
5. Written description of sequence of operation.
6. Schedule of dampers including size, leakage, and flow characteristics.
7. Schedule of valves including flow characteristics.
8. DDC System Hardware:
a. Wiring diagrams for control units with termination numbers.
b. Schematic diagrams and floor plans for field sensors and control hardware.
c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.

9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.

10. Controlled Systems:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 c. Written description of sequence of operation including schematic diagram.
 d. Points list.

C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.

D. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with BACnet.

E. Samples for Initial Selection: For each color required, of each type of thermostat or sensor cover with factory-applied color finishes.

F. Samples for Verification: For each color required, of each type of thermostat or sensor cover.

G. Software and Firmware Operational Documentation: Include the following:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
 5. Software license required by and installed for DDC workstations and control systems.

H. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

I. Qualification Data: For Installer and manufacturer.

J. Field quality-control test reports.

K. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section “Operation and Maintenance Data,” include the following:
 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
5. Calibration records and list of set points.

1.6 QUALITY ASSURANCE

A. General

1. Control Contractor shall be a direct factory branch office or authorized representative for manufacturer of Front End Software, DDC System Hardware and other related systems. Control Contractor shall have experience performing work of this nature and shall be pre-qualified by the state of New Jersey for Control Systems for at least $5 million.

2. Bids by wholesalers, dealers or any other firm not authorized to provide, install, service and maintain DDC based HVAC Controls will not be acceptable.

3. Control Contractor / manufacturer shall have a solid reputation of installing, servicing and maintaining “open protocol” Control systems that are compliant with servicing multiple manufacturers over a BACnet I/P protocol.

4. The DDC-ATC Contractor shall have a local branch facility within a 50-mile radius of the job site. Emergency service shall be available on a 24-hour, 7-day-a-week basis.

5. The DDC-ATC Contractor will coordinate with other Trade Contractors regarding the location and size of pipes, equipment, fixtures, conduit, ducts, openings, switches, outlets, and so forth, in order to eliminate any delays in the progress of the job.

6. The DDC-ATC Contractor shall complete work necessary to allow the Test and Balance Contractor to perform work in a timely manner. The DDC-ATC Contractor shall complete all work necessary to allow operation and demonstration of variable frequency drives.

B. Experience Record

1. The DDC-ATC Contractor shall have a minimum of ten years experience with the complete, turnkey installation of DDC-ATC Control Systems of similar size and technical complexity.

C. Products

1. Controller and DDC (Direct Digital Control) system components shall be current production products.

D. ISO-9001

1. The manufacturer of the DDC-ATC Control System shall provide documentation supporting compliance with ISO-9001 (Model of Quality Assurance in Design/Development, Production, Installation, and Servicing).

E. Quality Assurance Program

1. The DDC-ATC Contractor shall assign a single individual to serve as the Quality Assurance Manager, who is to be responsible for the management of the program.

F. Governing Code Compliance
1. The DDC-ATC Contractor shall comply with all current governing codes ordinances and regulations, including UL, NFPA, the local Building Code, NEC, and so forth.

G. FCC Regulation

1. All electronic equipment shall conform to the requirements of FCC Regulation, Part 23, Section 23, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

I. Comply with ASHRAE 135 for DDC system components.

1.7 GENERAL DESCRIPTION OF WORK

A. Installation of DDC-ATC Control System (DDC-ATC)

1. The DDC-ATC system shall encompass all work that is noted for the Rowan University Create Labs Building.

2. The Building management System (BMS) provided under this contract shall be an extension of the existing Honeywell Comfortpoint Open BMS currently serving the facility. The system installed under this contract shall be seamlessly integrated into the existing BMS system to allow any building connected to the Honeywell Comfortpoint Open BMS to be monitored and controlled from an existing operator work station and any operator’s interface device connected to the system. All new DDC control points shall be accessible from the LAN architecture and must tie-in to the existing Building Automation Center server (exiting EBI).

3. The existing Facility operator’s workstations and diagnostic terminal units shall be provided with all software and hardware upgrades, etc., as required to allow the complete monitoring, set-point adjustment, etc. of the new systems installed under this contract using the Facility’s existing operator’s workstations and diagnostic units.

4. The system must have the ability to modify new and existing building set-points. Read only access is unacceptable.

5. Provide new local controllers when necessary to accommodate new controls points.

a. The work under this Section shall include all materials and labor to perform all work required for the installation of the DDC-ATC as specified.

b. The drawings and Specifications are complementary to one another – meaning that what is called for on one is to be considered called for in both. Where conflicts exist between the Specifications and/or drawings, the more stringent requirement shall apply.

c. The DDC-ATC Contractor shall be responsible for field verification of site conditions and for gathering all necessary field data for all items to be provided under this contract prior to submitting his or her bid. Note: A site visit is required to bid on this project. Coordinate visit with Owner through Construction Manager. Provide at least 7 days notice to engineer of visit date.
d. Where work specified under other Sections of this Specification connects to equipment or systems that are listed and described in this Section, the DDC-ATC Contractor shall provide proper connection(s) to such equipment, including trade coordination.

e. The ATC System shall be compatible and interface with the building control valves as shown in the contract documents ATC/DDC controls.

f. Provide all equipment controls, sensors, wiring, and all other devices i.e., control valve actuators etc. required to meet the sequence of operation for the new equipment in the plant and buildings on campus and shall be back-wired into the new front end.

6. The system shall use open protocols exclusively. The contractor must provide new PC-based programming workstations, operator workstations and microcomputer controllers to accommodate new systems.

7. Description of Work:

a. Burlington Public Safety Building:

1. Existing Equipment served by existing electronic control system: The DDC-ATC shall monitor and control all mechanical equipment and instrumentation currently controlled via the existing electronic control system. This includes read/write capability, schedule and set point adjustment. All points shall be mapped directly into new front end control system. Any equipment with failing electronic controls shall be replaced with new electronic controls compatible with the DDC-ATC system.

2. New Rooftop Units: The new rooftop units shall be connected to the new DDC-ATC system. Provide all the necessary components but not limited to DDC controllers, relays, current sensors, flow switches, freezestats, damper actuators, control valves, fan relays, space sensors, discharge air sensors, mixed air temperature sensors, etc. necessary for a complete installation.

3. New Oven Exhaust and Lab Exhaust Fans: All new exhaust fans shall be connected to the new DDC-ATC system. Provide all the necessary components but not limited to DDC controllers, relays, current sensors, flow switches, damper actuators, fan relays, space sensors, etc. necessary for a complete installation.

4. New Equipment on Honeywell Comfortpoint Open BMS: The DDC-ATC shall monitor and control all new mechanical equipment and instrumentation. This includes read/write capability, schedule and set point adjustment. All points shall be mapped directly into new front end control system.

8. Twenty percent future expansion of both input/output points shall be provided.
9. The points list and sequence of operations is found in Section 23 “Sequence of Operations for HVAC Controls” and the respective equipment specification sections.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.9 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

C. Coordinate equipment with Division 26 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.

D. Coordinate equipment with Division 26 Section "Panelboards" to achieve compatibility with starter coils and annunciation devices.

E. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.

F. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete."

G. Inter-Divisions Coordination

1. The DDC-ATC Contractor shall cooperate with other divisions performing work on this project as necessary to achieve a complete and neat installation. The Contractor shall also consult the drawings and specifications of all trades to determine the nature and extent of others’ work. It will be the duty of this Contractor to work in cooperation with other contractors, and with other sub-contractors and employees, rendering assistance and arranging his or her work so that the entire project will be delivered in the best possible condition and in the shortest time.

2. If the DDC-ATC Contractor, upon completing coordination with other divisions performing work on this contract is under the assumption that there are still open issues that restrict he or she from completing their work, he or she must alert both the Construction Manager and Engineer of the problem in a timely manner.

1.10 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Replacement Materials:
 a. Two extra damper actuators.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturer specified.

2.2 CONTROL SYSTEM

A. Manufacturer:

1. Honeywell (Basis of Design; No Substitutions)

B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

C. Delegate Design: Provide room differential pressure system to maintain negative pressure in lab area as compared to adjacent corridor. Provide all sensors, transmitters, controllers, monitors, gauges and etc. required for a complete installation. Differential pressure system shall connect to new and existing HVAC equipment to maintain the required negative pressure.

2.3 DDC EQUIPMENT

A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.

1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.

2. Stand-alone mode control functions operate regardless of network status. Functions include the following:

 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 d. Software applications, scheduling, and alarm processing.
 e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:

 a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with
differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
c. Chiller Control Programs: Control function of condenser-water reset, chilled-water reset, and equipment sequencing.
d. Boiler Control Programs: Control function of hot-water reset and equipment sequencing.
e. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
f. Include additional programs as required to provide sequences as described in Section 23 “Sequence of Operations”.
g. Remote communications.
h. Maintenance management.
i. Units of Measure: Inch-pound and SI (metric).

4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.

1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.

1. Binary Inputs: Allow monitoring of on-off signals without external power.
2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
7. Universal I/Os: Provide software selectable binary or analog outputs.
D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:

1. Output ripple of 5.0 mV maximum peak to peak.
2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
3. Built-in overvoltage and overcurrent protection and be able to withstand 230 percent overload for at least 3 seconds without failure.

E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:

1. Minimum dielectric strength of 1000 V.
3. Minimum transverse-mode noise attenuation of 65 dB.
4. Minimum common-mode noise attenuation of 230 dB at 40 to 100 Hz.

F. Operator work station with display: provide with sufficient number of graphics to facilitate intended operation of facility.

2.4 UNITARY CONTROLLERS

A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.

1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.
3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
4. Enclosure: Dustproof rated for operation at 32 to 120 deg F.

2.5 ALARM PANELS

A. Unitized cabinet with suitable brackets for wall or floor mounting. Fabricate of 0.06-inch- thick, furniture-quality steel or extruded-aluminum alloy, totally enclosed, with hinged doors and keyed lock and with manufacturer’s standard shop-painted finish. Provide common keying for all panels.

B. Indicating light for each alarm point, single horn, acknowledge switch, and test switch, mounted on hinged cover.

1. Alarm Condition: Indicating light flashes and horn sounds.
2. Acknowledge Switch: Horn is silent and indicating light is steady.
3. Second Alarm: Horn sounds and indicating light is steady.
4. Alarm Condition Cleared: System is reset and indicating light is extinguished.
5. Contacts in alarm panel allow remote monitoring by independent alarm company.

2.6 ANALOG CONTROLLERS

A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.

B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.

C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.

1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.

D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.

E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.

2.7 TIME CLOCKS

A. Solid-state, programmable time control with 8 separate programs each with up to 100 on-off operations; 1-second resolution; lithium battery backup; keyboard interface and manual override; individual on-off-auto switches for each program; 365-day calendar with 20 programmable holidays; choice of fail-safe operation for each program; system fault alarm; and communications package allowing networking of time controls and programming from PC.

2.8 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.

B. Thermistor Temperature Sensors and Transmitters:

1. Accuracy: Plus or minus 0.5 deg F at calibration point.
2. Wire: Twisted, shielded-pair cable.
3. Insertion Elements in Ducts: Single point, 8 inches to 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
4. Averaging Elements in Ducts: 36 to 72 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
5. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
6. Room Sensor Cover Construction: Manufacturer's standard locking covers.
a. Set-Point Adjustment: Concealed.
b. Set-Point Indication: Concealed.
c. Thermometer: Concealed.
e. Orientation: Vertical.

7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

C. RTDs and Transmitters:
1. Accuracy: Plus or minus 0.2 percent at calibration point.
2. Wire: Twisted, shielded-pair cable.
3. Insertion Elements in Ducts: Single point, 8 inches to 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
4. Averaging Elements in Ducts: 18 to 48 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
5. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
6. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 e. Orientation: Vertical.

7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

D. Humidity Sensors: Bulk polymer sensor element.
1. Accuracy: 2 percent full range with linear output.
2. Room Sensor Range: 20 to 80 percent relative humidity.
3. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 e. Orientation: Vertical.

4. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
5. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of minus 22 to plus 185 deg F.
6. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.

E. Pressure Transmitters/Transducers:
1. **Static-Pressure Transmitter**: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 a. **Accuracy**: 2 percent of full scale with repeatability of 0.5 percent.
 b. **Output**: 4 to 20 mA.
 c. **Building Static-Pressure Range**: 0- to 0.25-inch wg.
 d. **Duct Static-Pressure Range**: 0- to 5-inch wg.

2. **Water Pressure Transducers**: Stainless-steel diaphragm construction, suitable for service; minimum 230-psig operating pressure; linear output 4 to 20 mA.
3. **Water Differential-Pressure Transducers**: Stainless-steel diaphragm construction, suitable for service; minimum 230-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
4. **Differential-Pressure Switch (Air or Water)**: Snap acting, with pilot-duty rating and with suitable scale range and differential.
5. **Pressure Transmitters**: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

F. Room Sensor Cover Construction: Manufacturer's standard locking covers.

1. **Set-Point Adjustment**: Concealed.
2. **Set-Point Indication**: Concealed.
3. **Thermometer**: Concealed.
4. **Color**: White.
5. **Orientation**: Vertical.

G. Room sensor accessories include the following:

1. **Insulating Bases**: For sensors located on exterior walls.
2. **Guards**: Locking; heavy-duty, transparent plastic; mounted on separate base.
3. **Adjusting Key**: As required for calibration and cover screws.

2.9 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 90 psig, piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.

2.10 THERMOSTATS

A. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.
 1. Label switches "FAN ON-OFF".
 2. Mount on single electric switch box.

B. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
 1. Automatic switching from heating to cooling.
 2. Preferential rate control to minimize overshoot and deviation from set point.
 3. Set up for four separate temperatures per day.
 4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
 5. Short-cycle protection.
 6. Programming based on every day of week.
 7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
 8. Battery replacement without program loss.
 9. Thermostat display features include the following:
 a. Time of day.
 b. Actual room temperature.
 c. Programmed temperature.
 d. Programmed time.
 e. Duration of timed override.
 f. Day of week.
 g. System mode indications include "heating," "off," "fan auto," and "fan on."

C. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

D. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
 1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.

E. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
 1. Bulbs in water lines with separate wells of same material as bulb.
 2. Bulbs in air ducts with flanges and shields.
3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.

4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.

5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.

6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.

F. Fire-Protection Thermostats: Listed and labeled by an NRTL acceptable to authorities having jurisdiction; with fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature, and the following:

G. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.

H. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

I. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.

2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

J. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.

2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

K. Heating/Cooling Valve-Top Thermostats: Proportional acting for proportional flow, with molded-rubber diaphragm, remote-bulb liquid-filled element, direct and reverse acting at minimum shutoff pressure of 25 psig, and cast housing with position indicator and adjusting knob.

2.11 ACTUATORS

A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.

1. Comply with requirements in Division 23 Section "Motors."
2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running torque of 230 in. x lbf and breakaway torque of 300 in. x lbf.
5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 230 in. x lbf and breakaway torque of 300 in. x lbf.

B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.

1. Valves: Size for torque required for valve close off at maximum pump differential pressure.

2. Dampers: Size for running torque calculated as follows:

 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

4. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

5. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.

7. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.

8. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.

9. Temperature Rating: Minus 22 to plus 122 deg F.

10. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.

11. Run Time: 12 seconds open, 5 seconds closed.

2.12 DAMPERS

A. Dampers: AMCA-rated, parallel and opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.

1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze or nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.

2. Operating Temperature Range: From minus 40 to plus 200 deg F.

3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.

B. Refer to specification 233300 "Air Duct Accessories" and 237313 "Modular Indoor Air-Handling Units" for further information.
2.13 CONTROL CABLE
A. Electronic and fiber-optic cables for control wiring are specified in Division 26 Section "Voice and Data Communication Cabling."

2.14 ELECTRICITY METERING
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. E-Mon; a division of Hunt Power.
3. Osaki Meter Sales, Inc.
4. Square D; a brand of Schneider Electric.

B. General Requirements for Owner’s Meters:
1. Comply with UL 1244.
2. Meters used for billing shall have an accuracy of 0.5 percent of reading, complying with requirements in ANSI C12.20.
3. Enclosure: NEMA 250, Type 3R minimum, with hasp for padlocking or sealing.
4. Identification: Comply with requirements in Section 260553 "Identification for Electrical Systems."
5. Memory Backup: Self-contained to maintain memory throughout power outages of 72 hours, minimum.
6. Sensors: Current-sensing type, with current or voltage output, selected for optimum range and accuracy for meters indicated for this application.
 a. Type: Split and solid core.
7. Current-Transformer Cabinet: Listed or recommended by metering equipment manufacturer for use with sensors indicated.
8. DDC-ATC Interface: One digital KY pulse to a user-definable increment of energy measurement. Match signal to DDC-ATC input and arrange to convey the instantaneous, integrated, demand level measured by meter to provide data for processing and possible programmed demand control action by destination system.

C. Kilowatt-hour/Demand Meter: Electronic three-phase meters, measuring electricity use and demand. Demand shall be integrated over a 15-minute interval.
1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
2. Display: LCD with characters not less than 0.25 inch high, indicating accumulative kilowatt-hours, current time and date, current demand, and historic peak demand, and time and date of historic peak demand. Retain accumulated kilowatt-hour and historic peak demand in a nonvolatile memory, until reset.

D. Software: Provide PC-based software in conjunction with software provided with DDC-ATC system.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that power supply is available to control units and operator workstation.

B. Verify that pneumatic piping and duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.2 INSTALLATION

A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.

B. Connect and configure equipment and software to achieve sequence of operation specified.

C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.

 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.

D. Install guards on thermostats in the following locations:

 1. Entrances.
 2. Public areas.
 3. Where indicated.

E. Install automatic dampers according to Division 23 Section "Duct Accessories."

F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

G. Install labels and nameplates to identify control components according to Division 23 Section "Mechanical Identification."

H. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic Piping."

I. Install refrigerant instrument wells, valves, and other accessories according to Division 23 Section "Refrigerant Piping."

J. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.

K. Install electronic and fiber-optic cables according to Division 26 Section "Voice and Data Communication Cabling."

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceways and Boxes."

B. Install building wire and cable according to Division 26 Section "Conductors and Cables."
C. Install signal and communication cable according to Division 26 Section “Voice and Data Communication Cabling.”

1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
2. Install exposed cable in raceway.
3. Install concealed cable in raceway.
4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
2. Test and adjust controls and safeties.
3. Test each point through its full operating range to verify that safety and operating control set points are as required.
4. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
5. Test each system for compliance with sequence of operation.
6. Test software and hardware interlocks.

C. DDC Verification:

1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
2. Check instruments for proper location and accessibility.
3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
4. Check instrument tubing for proper fittings, slope, material, and support.
5. Check installation of air supply for each instrument.
6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
8. Check temperature instruments and material and length of sensing elements.
9. Check control valves. Verify that they are in correct direction.
10. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.

11. Check DDC system as follows:
 a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 c. Verify that spare I/O capacity has been provided.
 d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.5 ADJUSTING

A. Calibrating and Adjusting:

1. Calibrate instruments.
2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:
 a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:
 a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:
 a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 b. Calibrate temperature switches to make or break contacts.

8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
9. Stroke and adjust control valves and dampers with positioners, following manufacturer’s recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.

10. Provide diagnostic and test instruments for calibration and adjustment of system.

11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 1 Section "Demonstration and Training."

END OF SECTION 230900
SECTION 23 09 93 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Furnish equipment, devices, switches, contacts, services and programming necessary for a complete and safe installation as required to re-implement the sequence of operation for the new rooftop unit and new exhaust fans.

B. All control set points, alarm set points, schedules and parameters shall be adjustable from the Operator Interface Station.

C. All temperature, pressure shall be trended. The Owner shall determine trend period and length of archived data period and give to the Control Contactor to program during start-up and commissioning. All trend parameters shall have the ability to be adjustable by Owner.

D. All memory chips in all controllers shall have 72 hours of volatile memory backup in 1st tier controllers and 6 months for 2nd tier controllers.

E. The DDCS shall utilize the following ambient room temperatures (adjustable) as heating and cooling design set points:

1. Heating Occupied: 70 deg F
2. Heating Unoccupied: 65 deg F
3. Cooling Occupied: 75 deg F
4. Cooling Unoccupied: 79 deg F

1.2 RELATED SECTIONS

A. See Division 23 Section "Instrumentation and Control" and individual equipment specifications for control equipment and devices, coordination requirements between equipment manufacturer and DDCS installing contractor and for submittal requirements.

1.3 DEFINITIONS

A. DDCS – Direct Digital Control System.

1.4 NEW SINGLE ZONE DX GAS FIRED 100% MAKEUP AIR ROOFTOP UNIT (SERVING NEW FUME HOOD, IGNITION OVEN AND TALL OVENS)

A. General:

1. The single zone DX gas fired makeup air unit rooftop unit serving the building consist of supply fan, DX cooling, gas furnace and space temperature control.

B. Safety Controls for Rooftop Air Conditioning Units
1. Provide low-limits controller to prevent discharge air from falling below 45 degrees for temperature selected on a continued drop in outside air temperature. The heating control valve shall open.
2. Provide relays to close outside air damper when unit fan is de-energized.
3. Where applicable supply air smoke detector shall stop the supply fan, interlocked return fan and interlocked compressors upon the presence of smoke through the fire alarm system.
4. A high discharge and low suction pressure switch shall stop the supply fan when duct pressure exceeds design value. The fan shall remain off until the pressure switches are reset.
5. All duct mounted automatic control instruments shall be mounted on the exterior surface of the insulation, on suitable metal saddles. Provide appropriate extension mountings for control devices to clear insulation.
6. Fire Alarm Shut Down: Under a fire or smoke alarm condition, the fire alarm control panel shall shut down the supply, return and exhaust fans. Fire alarm system activation initiated by manual pull station, shall not shut down supply and exhaust fans.
7. When a supply fan is called for to start, all the dampers shall first open then dampers end switches will permit the fans to start by completing fan starter holding coil circuits.

C. Unoccupied Mode

1. The unit fans shall de-energize. The outside air damper shall be fully closed, gas furnace shall close and mechanical cooling disabled. On a call for setback temperature heating or cooling, the supply fan shall be cycled on, and the heating coil or DX cooling placed under control upon a call for cooling or heating. The associated exhaust fans shall be off.

E. Humidity Control for Space Dehumidification

1. General:
 a. There shall be a relative humidity transmitter mounted in the space and connected to the dedicated unit DDC controller. The space transmitter shall be utilized to compare the return and supply air temperature and humidity to make adjustments accordingly.
 b. If the occupied space air relative humidity rises above 55% RH (+/-2%) (adj.) or if the unoccupied space relative humidity rises above 65% RH (+/-2%) (adj.), the Dehumidifying Sequence shall be activated. The modulating hot gas reheat coil diverting valve shall be activated and modulate open subject to the temperature at the supply air sensor.
 c. When the occupied space relative humidity drops below 55% (+/-2%) RH (adjustable setpoint) or the unoccupied space relative humidity drops below 65% (+/-2%) RH (adjustable setpoint), a stage of DX cooling will be deactivated (unless
required by the occupied space cooling load) and the modulating hot gas reheat
coil diverting valve shall close.
d. The temperature sensitivity shall be less than or equal to 0.06% RH per degree F.
e. The Dehumidification Control Sequence shall be activated during the occupied
period.
f. An alarm shall be annunciated if the space relative humidity reading as recorded
by the combination space temperature/relative humidity sensor senses a relative
humidity at or exceeding 70%.

F. The standalone unit mounted controller shall be capable of interfacing with the BAS. The Stand
Alone Air Conditioning Unit DDC controller shall be capable of providing monitoring and visual
display points indicated in this specification section.

G. Monitoring/Visual Display Points:

1. Analog Inputs
 a. Supply Air Temperature.
 b. Zone Temperature.
 c. Filter Differential Pressure Alarm.
 d. Relative Humidity. (Outside Air F)
 e. Outside Air Temperature.
 f. Outside Air Enthalpy

2. Binary Inputs
 a. Supply Fan Status.
 b. Supply Fan Start/Stop Alarm.
 c. Smoke detectors
 d. High/Low Limit Alarm.
 e. Air Filter Differential Pressure.
 f. Outside Air Sensor.
 g. Enthalpy setpoint

3. Analog Output
 a. Supply Air Temperature Setpoint.
 b. Heating Coil Failure Alarm.
 c. Zone Space Temperature Sensor.
 d. High/Low Limit Setpoint/Alarm.(Unit and Space)
 e. High Humidity Alarm.
 f. DX Start/Stop Failure Alarm.
 g. High Pressure Filter Alarm.
 h. Smoke detector Alarm.
 i. Freeze Stat Alarm.

4. Binary Output
 a. Supply Fan Start/Stop.
 b. Supply Fan Start/Stop Alarm.
 c. Gas heating operation.
 d. Outside Air Damper position.
e. DX Cooling Stage.
f. High CO2 Alarm.
g. DX Cooling Stage Alarm.

5. Application Control Programs

a. Occupancy Schedule start/stop.
b. Optimal start/stop.
c. Unoccupied Zone Temperature Control.

H. Alarm/Safety:

1. A new smoke detector shall provide a shutdown contact. This contact shall be wired to the DDC controller to disable control loops during a smoke condition. The Fire Alarm system shall shut down the Fan directly at the Fan starter. Under a fire or smoke alarm condition, the fire alarm control panel shall shut down the supply fan. Fire alarm system activation initiated by manual pull station, shall not shut down supply and exhaust fans.

2. A duct-mounted low limit temperature sensor (“freezeastat”) will be located after the heating coil. Upon sensing a temperature below 35 deg F (adjustable) a signal will be sent to the DDCS and the heating valve will be commanded full open and the outside air damper will be commanded closed.

3. A high discharge and low suction pressure switch shall stop the supply fan when duct pressure exceeds design value. The fan shall remain off until the pressure switches are reset.

4. Upon loss of communication with DDCS, the Stand Alone Air Conditioning Unit DDC controller shall operate in occupied mode.

1.5 EXHAUST FANS

A. Maintain existing sequences as a minimum.

B. General: All dampers associated with exhaust fans shall open whenever the exhaust fans are commanded to start.

C. Oven Exhaust: Whenever any of the tall ovens are in operation, the associated exhaust fan, serving three tall ovens, the induced draft fan and associated makeup air RTU shall operate. In addition, the fume hood/ignition oven exhaust shall operate.

D. Science Lab Exhaust: The Science Lab Hood exhaust fan shall operate with its associated makeup air RTU as detailed in that sequence. Hood exhaust shall operate at constant volume. Fans serving the fume hood/ignition oven and tall ovens shall be activated whenever the respective RTU is operating in occupied mode, i.e. outdoor damper open. In addition, the RTU shall be indexed to occupied mode whenever the hood off/on is switched on or the tall ovens are in operation. The associated automatic dampers in the duct at the fume hood, ignition oven and tall ovens shall open and close respectively with its equipment operation.

E. Monitoring/Visual Display Points:

1. Binary Inputs

a. Exhaust Fan Status.
b. Exhaust Fan Start/Stop Alarm.
2. Binary Output

 a. Exhaust Fan Start/Stop.
 b. Exhaust Fan Start/Stop Alarm.

1.6 ROOM DIFFERENTIAL PRESSURE

 A. Delegated Design: Provide room differential pressure system to maintain negative pressure in lab area as compared to adjacent corridor. Provide all sensors, transmitters, controllers, monitors, gauges and etc. required for a complete installation. Differential pressure system shall connect to new and existing HVAC equipment, i.e. existing equipment. RTU-2, EF-7 & EF-8 to maintain the required negative pressure.

 1. Monitoring/Visual Display Points:

 a. Lab space pressure
 b. Corridor pressure.
 c. Differential pressure.

1.7 INDICATIONS AND SAFETY

 A. Station Display: Indicate on operator workstation display terminal system operating status and parameters listed in this section.

 1. DDC system graphic.
 2. DDC system status, on-off.
 3. Outdoor-air temperature.
 4. Time and time schedule.

1.8 SPARE I/O POINTS

 A. Provide analog and digital inputs and outputs on the DDCS as required to achieve the above sequence of operation plus 20% for analog points and 20% for digital points. Submit point list for approval.

1.9 EXISTING RETURN AIR WALL OPENINGS

 A. Two existing corridor wall openings, 30x20 and 28x20 shall be provided with new sheet metal collars, automatic dampers and actuators. The ATC contractor shall connect the two wall opening damper actuators to the existing DDC/ATC system. The dampers shall be commissioned open during normal conditions for heat and cooling only. The dampers shall be interlocked to close when the existing fume hoods in room 124 and room 127 are in operation.

 B. Two existing room wall openings, 30x18 and 24x10, with automatic dampers shall operate consistent with the existing sequences and DDC/ATC system.
PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230993
SECTION 23 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.
3. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

B. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:
1. Piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.
2. Detail mounting, supports, and valve arrangements for and pressure regulator assembly.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of seismic restraints.
2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS
A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of natural-gas service.
 2. Do not proceed with interruption of natural-gas service without Owner's written permission.

1.11 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.
B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS
A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

b. End Connections: Threaded or butt welding to match pipe.
c. Lapped Face: Not permitted underground.
e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.

a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

6. Mechanical Couplings:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Dresser Piping Specialties; Division of Dresser, Inc.
2) Smith-Blair, Inc.

b. Steel flanges and tube with epoxy finish.
c. Buna-nitrile seals.
d. Steel bolts, washers, and nuts.
e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. OmegaFlex, Inc.
b. Parker Hannifin Corporation; Parflex Division.
c. Titeflex.
d. Tru-Flex Metal Hose Corp.

3. Coating: PE with flame retardant.

a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1) Flame-Spread Index: 25 or less.
2) Smoke-Developed Index: 50 or less.
4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

4. Corrugated stainless-steel tubing with polymer coating.
5. Operating-Pressure Rating: 0.5 psig.

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.

1. Copper-alloy convenience outlet and matching plug connector.
2. Nitrile seals.
3. Hand operated with automatic shutoff when disconnected.
4. For indoor or outdoor applications.
5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. Basket Strainers:

1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

E. T-Pattern Strainers:

1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
2. End Connections: Grooved ends.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
4. CWP Rating: 750 psig.

F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.

 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.

 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.
e. Perfection Corporation; a subsidiary of American Meter Company.
f. Or approved equivalent.

3. Ball: Chrome-plated brass.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Separate packnut with adjustable-stem packing threaded ends.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 f. Or approved equivalent.

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
f. Or approved equivalent.

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.
 c. Or approved equivalent.

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Xomox Corporation; a Crane company.
 d. Or approved equivalent.

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

I. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flowserve.
 b. Homestead Valve; a division of Olson Technologies, Inc.
 d. Milliken Valve Company.
 e. Mueller Co.; Gas Products Div.
 g. Or approved equivalent.

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 EARTHQUAKE VALVES

A. Earthquake Valves: Comply with ASCE 25.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Vanguard Valves, Inc.
 b. Or approved equivalent.

2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 5 psig.
5. Nitrile-rubber valve washer.
7. Threaded end connections complying with ASME B1.20.1.
8. Wall mounting bracket with bubble level indicator.

B. Earthquake Valves: Comply with ASCE 25.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pacific Seismic Products, Inc.
 b. Or approved equivalent.
2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 0.5 psig.
4. Cast-aluminum body with stainless-steel internal parts.
6. Valve position, open or closed, indicator.
7. Composition valve seat with clapper held by spring or magnet locking mechanism.
8. Level indicator.
9. End Connections: Threaded for valves NPS 2 and smaller; flanged for valves NPS 2-1/2 and larger.

2.6 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 d. Invensys.
 e. Richards Industries; Jordan Valve Div.
 f. Or approved equivalent.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 100 psig.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Actaris.
b. American Meter Company.
c. Eclipse Combustion, Inc.
d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
e. Invensys.
f. Maxitrol Company.
g. Richards Industries; Jordan Valve Div.
h. Or approved equivalent.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.
 f. Or approved equivalent.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or approved equivalent.

2. Description:

 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.
 f. Or approved equivalent.

2. Description:

 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Or approved equivalent.

2. Description:
a. Nonconducting materials for field assembly of companion flanges.
b. Pressure Rating: 150 psig.
c. Gasket: Neoprene or phenolic.
d. Bolt Sleeves: Phenolic or polyethylene.
e. Washers: Phenolic with steel backing washers.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shut-off valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to The International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with The International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Steel Piping with Protective Coating:

1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
3. Replace pipe having damaged PE coating with new pipe.

C. Install fittings for changes in direction and branch connections.

D. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

Rowan University
CREATES Lab Renovation
Rowan Project No. 77044
FACILITY NATURAL GAS PIPING

June 1, 2018
Section 231123 - 13
3.4 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
1. **Above Accessible Ceilings:** Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. **In Floors:** Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.

3. **In Floor Channels:** Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.

4. **In Walls or Partitions:** Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. **Exception:** Tubing passing through partitions or walls does not require striker barriers.

5. **Prohibited Locations:**
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

C. Install earthquake valves aboveground outside buildings according to listing.

3.6 Piping Joint Construction

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints NPS 4 and Smaller:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints NPS 6 and above:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.7 Hanger and Support Installation

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

D. Install hangers for horizontal drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2 and NPS 5/8: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and NPS 7/8: Maximum span, 84 inches; minimum rod size, 3/8 inch.
4. NPS 1: Maximum span, 96 inches; minimum rod size, 3/8 inch.

E. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.8 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
3.10 PAINTING

A. Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI EXT 5.1D.
 - d. Color: Gray.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 - d. Color: Yellow.

2. Alkyd System: MPI INT 5.1E.
 - d. Color: Yellow.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Section 033000 "Cast-in-Place Concrete."

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.13 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.14 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be one of the following:
 1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.

B. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Annealed-temper copper tube with wrought-copper fittings and brazed joints.

C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG Retain and revise applicable piping applications. Coordinate with materials specified in Part 2.

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
3. Annealed-temper, copper tube with wrought-copper fittings and brazed joints.
4. Aluminum tube with flared fittings and joints.
5. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Drawn-temper copper tube with wrought-copper fittings and brazed joints.

C. Underground, below building, piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.
 1.

3.16 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be[one of] the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

E. Valves in branch piping for single appliance shall be[one of] the following:
1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.4 SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for thermostatic expansion valves, solenoid valves, and pressure-regulating valves.

1. Thermostatic expansion valves.
2. Solenoid valves.
3. Hot-gas bypass valves.
4. Filter dryers.
5. Strainers.
6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationship between piping and equipment.

1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

C. Welding Certificates: Copies of certificates for welding procedures and personnel.

D. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.
E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX; "Welding and Brazing Qualifications."

C. ASME Standard: Comply with ASME B31.5, "Refrigeration Piping."

D. UL Standard: Provide products complying with UL 207, "Refrigerant-Containing Components and Accessories, Nonelectrical"; or UL 429, "Electrically Operated Valves."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate layout and installation of refrigerant piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

B. Coordinate pipe sleeve installations for foundation wall penetrations.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

D. Coordinate pipe sleeve installations for penetrations in exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 07 Section "Through-Penetration Firestop Systems" for materials and methods for sealing pipe penetrations through fire and smoke barriers.

E. Coordinate pipe fitting pressure classes with products specified in related Sections.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Refrigeration Oil Test Kits: Two each, containing everything required to conduct one test.
 2. Refrigerant: Two containers each, with 20 lb of refrigerant.
 3. Filter-Dryer Cartridges: Three of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Refrigerants:
 a. Allied Signal, Inc./Fluorine Products; Genetron Refrigerants.
 b. DuPont Company; Fluorochemicals Div.
 d. ICI Americas Inc./ICI KLEA; Fluorochemicals Bus.
 e. Or approved equivalent.

2. Refrigerant Valves and Specialties:
 a. Climate & Industrial Controls Group; Parker-Hannifin Corp.; Refrigeration & Air Conditioning Division.
 b. Danfoss Electronics, Inc.
 c. Emerson Electric Company; Alco Controls Div.
 d. Henry Valve Company.
 e. Sporlan Valve Company.
 f. Or approved equivalent.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tube: ASTM B 280, Type ACR

B. Annealed-Temper Copper Tube: ASTM B 88, Type L.

C. Wrought-Copper Fittings: ASME B16.22.

D. Bronze Filler Metals: AWS A5.8, Classification BAg-1 (silver)

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53, Schedule 40, seamless black steel.

B. Wrought-Steel Fittings: ASTM A 234/A 234M, for welded joints.

C. Steel Flanges and Flanged Fittings: ASME B16.5, steel, including bolts, nuts, and gaskets, butt-welded end connection, and raised face.

D. Flanged Unions: 400-psig working pressure, 330 deg F maximum operating temperature; 2 brass tailpiece adapters for solder-end connections to copper tubing; forged-steel flanges for NPS 1 to NPS 1-1/2 and ductile iron for NPS 2 to NPS 3 with 4 plated-steel bolts, with silicon bronze nuts and fiber gasket; and having factory-applied, rust-resistant coating on flanges and bolts.

E. Flexible Connectors: 500-psig operating pressure; seamless tin-bronze or stainless-steel core, high-tensile bronze-braid covering, solder-end connections, and synthetic covering; dehydrated, pressure tested, minimum 7 inches long.

2.4 VALVES
A. Service Valves: 500-psig pressure rating; forged-brass body with copper stubs, brass caps, removable valve core, integral ball check valve, and with solder-end connections.

B. Solenoid Valves: Comply with ARI 760; 250 deg F temperature rating and 400-psig working pressure; forged brass, with polytetrafluoroethylene valve seat, 2-way, straight-through pattern, and solder-end connections; manual operator; fitted with suitable NEMA 250 enclosure of type required by location, with 1/2-inch conduit adapter and 24-V, normally closed holding coil.

C. Pressure-Regulating Valves: Comply with ARI 770; pilot operated, forged brass or cast bronze, stainless-steel bottom spring, pressure-gage tappings, 24-V dc standard coil, and wrought-copper fittings for solder-end connections; suitable for refrigerant specified.

D. Thermostatic Expansion Valves: Comply with ARI 750; brass body with stainless-steel parts; thermostatic-adjustable, modulating type; size and operating characteristics as recommended by manufacturer of evaporator, and factory set for superheat requirements; solder-end connections; with sensing bulb, distributor having side connection for hot-gas bypass line, and external equalizer line.

E. Hot-Gas Bypass Valve: Pulsating-dampening design, stainless-steel bellows and polytetrafluoroethylene valve seat; adjustable; sized for capacity equal to last step of compressor unloading; with solder-end connections.

2.5 REFRIGERANT PIPING SPECIALITIES

A. Straight- or Angle-Type Strainers: 500-psig working pressure; forged-brass or steel body with stainless-steel wire or brass-reinforced Monel screen of 80 to 100 mesh in liquid lines up to 1-1/8 inches, 60 mesh in larger liquid lines, and 40 mesh in suction lines; with screwed cleanout plug and solder-end connections.

B. Moisture/Liquid Indicators: 500-psig maximum working pressure and 200 deg F operating temperature; all-brass body with replaceable, polished, optical viewing window with color-coded moisture indicator; with solder-end connections.

C. Replaceable-Core Filter-Dryers: 500-psig maximum working pressure; heavy gage protected with corrosion-resistant-painted steel shell, flanged ring and spring, ductile-iron cover plate with steel cap screws; wrought-copper fittings for solder-end connections; with replaceable-core kit, including gaskets and the following:
 1. Filter Cartridge: Pleated media with integral end rings, stainless-steel support, ARI 730 rated for capacity.
 2. Filter-Dryer Cartridge: Pleated media with solid-core sieve with activated alumina, ARI 730 rated for capacity.

D. Permanent Filter-Dryer: 350-psig maximum operating pressure and 225 deg F maximum operating temperature; steel shell and wrought-copper fittings for solder-end connections; molded-felt core surrounded by desiccant.

E. Mufflers: 500-psig operating pressure, welded-steel construction with fusible plug; sized for refrigeration capacity.

2.6 REFRIGERANTS
A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Aboveground, within Building: Type ACR drawn-copper tubing

B. Aboveground, outside Building for NPS 2 and Smaller: Type L drawn-copper tubing.

3.2 VALVE APPLICATIONS

A. Install a full-sized, three-valve bypass around each dryer.

B. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve.
 1. Install solenoid valves in horizontal lines with coil at top.
 2. Electrical wiring for solenoid valves is specified in Division 16 Sections. Coordinate electrical requirements and connections.

C. Install thermostatic expansion valves as close as possible to evaporator.
 1. If refrigerant distributors are used, install them directly on expansion-valve outlet.
 2. Install valve so diaphragm case is warmer than bulb.
 3. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 4. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

D. Install pressure-regulating and pressure relief valves as required by ASHRAE 15. Pipe pressure relief valve discharge to outside.

3.3 SPECIALTY APPLICATIONS

A. Install liquid indicators in liquid line leaving condenser, in liquid line leaving receiver, and on leaving side of liquid solenoid valves.

B. Install strainers immediately upstream from each automatic valve, including expansion valves, solenoid valves, hot-gas bypass valves, and compressor suction valves.

C. Install strainers in main liquid line where multiple expansion valves with integral strainers are used.

D. Install strainers in suction line of steel pipe.

E. Install moisture-liquid indicators in liquid lines between filter-dryers and thermostatic expansion valves and in liquid line to receiver.

F. Install pressure relief valves on ASME receivers; pipe discharge to outdoors.

G. Install replaceable-core filter-dryers in vertical liquid line adjacent to receivers and before each solenoid valve.
H. Install permanent filter-dryers in low-temperature systems, in systems using hermetic compressors, and before each solenoid valve.

I. Install solenoid valves in liquid line of systems operating with single pump-out or pump-down compressor control, in liquid line of single or multiple evaporator systems, and in oil bleeder lines from flooded evaporators to stop flow of oil and refrigerant into suction line when system shuts down.

J. Install receivers, sized to accommodate pump-down charge, on systems 5 tons and larger and on systems with long piping runs.

K. Install flexible connectors at or near compressors where piping configuration does not absorb vibration.

3.4 PIPING INSTALLATION

A. Install refrigerant piping according to ASHRAE 15.

B. Basic piping installation requirements are specified in Division 23 Section "Common Work Results for HVAC."

C. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

D. Arrange piping to allow inspection and service of compressor and other equipment. Install valves and specialties in accessible locations to allow for service and inspection.

E. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation. Use sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.

F. Install copper tubing in rigid or flexible conduit in locations where copper tubing will be exposed to mechanical injury.

G. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

H. Install bypass around moisture-liquid indicators in lines larger than NPS 2.

I. Install unions to allow removal of solenoid valves, pressure-regulating valves, and expansion valves and at connections to compressors and evaporators.

J. When brazing, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion valve bulb.

K. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports."

L. Install the following pipe attachments:
1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
3. Pipe rollers for multiple horizontal runs 20 feet or longer, supported by a trapeze.
4. Spring hangers to support vertical runs.

M. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

N. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 84 inches; minimum rod size, 1/4 inch.
2. NPS 3/4: Maximum span, 84 inches; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 84 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
5. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
6. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
7. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
8. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.

O. Support vertical runs at each floor.

3.5 PIPE JOINT CONSTRUCTION

A. Braze joints according to Division 23 Section "Common Work Results for HVAC."

B. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide) during brazing to prevent scale formation.

3.6 FIELD QUALITY CONTROL

A. Test and inspect refrigerant piping according to ASME B31.5, Chapter VI.

1. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure.
2. Test high- and low-pressure side piping of each system at not less than the lower of the design pressure or the setting of pressure relief device protecting high and low side of system.

 a. System shall maintain test pressure at the manifold gage throughout duration of test.
 b. Test joints and fittings by brushing a small amount of soap and glycerine solution over joint.
 c. Fill system with nitrogen to raise a test pressure of 150 psig or higher as required by authorities having jurisdiction.
d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat requirements.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of the conditioned air or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Check compressor oil level above center of sight glass.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves, except bypass valves that are used for other purposes.
 5. Check compressor-motor alignment, and lubricate motors and bearings.

3.8 CLEANING

A. Before installing copper tubing other than Type ACR, clean tubing and fittings with trichloroethylene.

B. Replace core of filter-dryer after system has been adjusted and design flow rates and pressures are established.

3.9 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter-dryer after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to a vacuum of 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line. Provide full-operating charge.

END OF SECTION 23 23 00
SECTION 23 29 23 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS
 A. CE: Conformite Europeene (European Compliance).
 B. CPT: Control power transformer.
 C. DDC: Direct digital control.
 D. EMI: Electromagnetic interference.
 E. LED: Light-emitting diode.
 F. NC: Normally closed.
 G. NO: Normally open.
 H. OCPD: Overcurrent protective device.
 I. PID: Control action, proportional plus integral plus derivative.
 J. RFI: Radio-frequency interference.
 K. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type and rating of VFC indicated.
 1. Include dimensions and finishes for VFCs.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: For each VFC indicated.
1. Include mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Required working clearances and required area above and around VFCs.
 2. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements.
 3. Show support locations, type of support, and weight on each support.
 4. Indicate field measurements.

B. Qualification Data: For testing agency.

C. Seismic Qualification Certificates: For each VFC, accessories, and components, from manufacturer.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.

D. Product Certificates: For each VFC from manufacturer.

F. Source quality-control reports.

G. Field quality-control reports.

H. Sample Warranty: For special warranty.

1.6 LEED Submittals:

A. Provide manufacturer’s data and related documents for LEED requirements as shown in Division 1 Section “Sustainable Design Requirements”.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and motor-circuit protector trip settings.
 b. Manufacturer's written instructions for setting field-adjustable overload relays.
 c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
 e. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
 f. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.8 MAINTENANCE MATERIAL SUBMITTALS

 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Indicating Lights: Two of each type and color installed.
 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.9 QUALITY ASSURANCE

 A. Testing Agency Qualifications: Member company of NETA or an NRTL.

 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.10 DELIVERY, STORAGE, AND HANDLING

 A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and install temporary electric heating, with at least 250 W per controller.

 B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.
1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Schneider Electric USA, Inc.
2. Yaskawa.
3. Reliance.
4. ABB.
5. Or approved equal.

2.2 SYSTEM DESCRIPTION

A. General Requirements for VFCs:

1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.

B. Application: Constant torque and variable torque.

C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
F. Unit Operating Requirements:
 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
 7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
 8. Humidity Rating: Less than 95 percent (noncondensing).
 11. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 12. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 13. Speed Regulation: Plus or minus 10 percent.
 14. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 15. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

I. Internal Adjustability Capabilities:
 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 0.1 to 999.9 seconds.
 4. Deceleration: 0.1 to 999.9 seconds.
 5. Current Limit: 30 to minimum of 150 percent of maximum rating.

J. Self-Protection and Reliability Features:
 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 3. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 5. Inverter overcurrent trips.
 6. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 7. Critical frequency rejection, with three selectable, adjustable deadbands.
 8. Instantaneous line-to-line and line-to-ground overcurrent trips.
 11. Short-circuit protection.
K. **Automatic Reset/Restart:** Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

L. **Power-Interruption Protection:** To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

M. **Bidirectional Autospeed Search:** Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

N. **Torque Boost:** Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

O. **Motor Temperature Compensation at Slow Speeds:** Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

P. **Integral Input Disconnecting Means and OCPD:** UL 489, instantaneous-trip circuit breaker with pad-lockable, door-mounted handle mechanism.
 1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
 2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
 4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 5. NO alarm contact that operates only when circuit breaker has tripped.

2.3 **PERFORMANCE REQUIREMENTS**

A. **Seismic Performance:** VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.
 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.4 **CONTROLS AND INDICATION**

A. **Status Lights:** Door-mounted LED indicators displaying the following conditions:
 1. Power on.
 2. Run.
 3. Overvoltage.
 4. Line fault.
 5. Overcurrent.
B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
 a. A minimum of two programmable analog inputs: 0- to 10-V dc.
 b. A minimum of six multifunction programmable digital inputs.

2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.

3. Output Signal Interface: A minimum of one programmable analog output signal(s) (0- to 10-V dc), which can be configured for any of the following:
 a. Output frequency (Hz).
b. Output current (load).
c. DC-link voltage (V dc).
d. Motor torque (percent).
e. Motor speed (rpm).
f. Set point frequency (Hz).

4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:

 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

1. Number of Loops: Two.

G. Interface with DDC System for HVAC: Factory-installed hardware and software shall interface with DDC system for HVAC to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC’s nonvolatile memory.

1. Hardwired Points:
 a. Monitoring: On-off status
 b. Control: On-off operation

2. Communication Interface: Comply with ASHRAE 135. Communication shall interface with DDC system for HVAC to remotely control and monitor lighting from a DDC system for HVAC operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the DDC system for HVAC.

2.5 LINE CONDITIONING AND FILTERING

A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.

B. Provide minimum 5% line reactor.

C. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

2.6 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
B. **Bypass Mode:** Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.

C. **Bypass Controller:** Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.

3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

D. **Bypass Contactor Configuration:** Full-voltage (across-the-line) type.

1. NORMAL/BYPASS selector switch.
2. HAND/OFF/AUTO selector switch.
3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 200 VA.
 a. Bimetallic Overload Relays:
 1) Inverse-time-current characteristic.
 2) Class 10 tripping characteristic.
 3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 4) Ambient compensated.
 5) Automatic resetting.
 b. Solid-State Overload Relays:
 1) Switch or dial selectable for motor-running overload protection.
 2) Sensors in each phase.
 3) Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.

c. NO isolated overload alarm contact.
d. External overload, reset push button.

2.7 OPTIONAL FEATURES

A. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.

B. Motor Preheat Function: Preheats motor when idle to prevent moisture accumulation in the motor.

C. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

D. Remote digital operator kit.

E. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.8 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: Type 1.
2. Outdoor Locations: Type 3R.
3. Other Wet or Damp Indoor Locations: Type 4.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.9 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

1. Push Buttons: Covered.
4. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

B. Reversible NC/NO bypass contactor auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Supplemental Digital Meters:

1. Elapsed-time meter.
2. Kilowatt meter.

F. Spare control-wiring terminal blocks; wired.

2.10 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.

1. Test each VFC while connected to its specified motor.
2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

3.2 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

B. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in each fusible-switch VFC.

F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

G. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.

H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

I. Comply with NECA 1.

3.4 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic-control devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.5 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each VFC with engraved nameplate.
3. Label each enclosure-mounted control and pilot device.

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

E. Tests and Inspections:

1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Construction Manager before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:
a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.

b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.

c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. VFCs will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Construction Manager before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

F. Set field-adjustable pressure switches.
3.9 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923
SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round and flat-oval ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.
 7. Fume Hood exhaust.

B. Related Sections:
 1. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
 2. Division 23 Section "Mechanical Insulation" for insulation requirements for systems that do not require duct liner as noted within this Section.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, duct sealing, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes for all systems indicated on drawings.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Seam, joint and wall penetration sealing class and product data.
10. Penetrations through fire-rated and other partitions.
11. Equipment installation based on equipment being used on Project.
12. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
13. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations for selecting hangers and supports.

D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Penetrations of smoke barriers and fire-rated construction.

E. Welding certificates.

F. Field quality-control reports.

1.5 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

E. NFPA Compliance:
 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G60 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets; commercial quality; with oiled, matte finish for exposed ducts.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.

F. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

G. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

H. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Or approved equivalent.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Finishes for Surfaces Exposed to View: Mill phosphatized.
C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Basis-of-Design Product: Subject to compliance with requirements, provide Johns-Manville; Linacoustic RC for rectangular ductwork and Spiracoustic Plus for round spiral ductwork or comparable product by one of the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Knauf Insulation.
 c. Or approved equivalent.

2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Solvent-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, and length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

7. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

8. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 10. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

G. Trapeze and Riser Supports:

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR LABORATORY EXHAUST AND FUME HOOD EXHAUST DUCTS

A. Install ducts in accordance with NFPA 45, "Fire Protection for Laboratories Using Chemicals."

B. Install exhaust ducts without dips and traps that may hold water. Slope ducts a minimum of 2 percent back to hood or inlet. Where indicated on Drawings, install trapped drain piping.

C. Connect duct to fan, fume hood, and other equipment indicated on Drawings.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
3. Unconditioned Space, Exhaust Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.
3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:

 a. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.

 b. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.

 c. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

5. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."
3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

<table>
<thead>
<tr>
<th>HVAC System</th>
<th>Duct Type</th>
<th>Static Pressure Construction Class</th>
<th>Seal Class</th>
<th>Sealing Applicable</th>
<th>Leakage Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU</td>
<td>SA, RA</td>
<td>2"</td>
<td>C</td>
<td>Note 3</td>
<td>24 12</td>
</tr>
<tr>
<td>VAV</td>
<td>SA</td>
<td>2"</td>
<td>C</td>
<td>Note 3</td>
<td>24 12</td>
</tr>
<tr>
<td>EF</td>
<td>EA</td>
<td>2"</td>
<td>C</td>
<td>Note 3</td>
<td>24 12</td>
</tr>
<tr>
<td>Ventilation Louver</td>
<td>OA at MER's</td>
<td>2"</td>
<td>C</td>
<td>Note 3</td>
<td>24 12</td>
</tr>
</tbody>
</table>

Notes:
1. Refer to SMACNA Tables for additional information.
2. Ventilation (Outside) Air shall be considered/constructed same as Supply Air.
3. Transverse Joints Only.
4. Joints, Seams and All Wall Penetrations.

B. Intermediate Reinforcement:

C. Liner: Provide for full duct system. For exterior lined ductwork, provide internal lining plus external lining and jacketing to meet overall outdoor insulation R-value.
 1. Supply and Outside Air Ducts: Fibrous glass, Type I, 1 inch thick.
 2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick.
 3. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

D. Duct:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.

E. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."

 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.

 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.
3. Ducts Connected to Fans Exhausting Fume Hood, Laboratory, and Process (ASHRAE 62.1, Class 3 and Class 4) Air:

a. Type 304, stainless-steel sheet.
 1) Exposed to View: No. 3 finish.
 2) Concealed: No. 2D finish.

b. Pressure Class: Positive or negative 3-inch wg.

c. Minimum SMACNA Seal Class A, welded seams and joints.

d. SMACNA Leakage Class 2.

e. Airtight/watertight.

END OF SECTION 23 31 13
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, Division 23 Specification Sections, and Common Work Requirements for HVAC apply to the work specified in this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
3. Control dampers.
4. Fire dampers.
5. Turning vanes.
6. Duct-mounted access doors.
7. Duct access panel assemblies.
8. Flexible connectors.
10. Duct accessory hardware.
11. Wire mesh grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For all accessories specified, include construction details, dimensions, materials, finishes, bearings and compliance with applicable codes.
2. Performance: Show compliance with pressure drops or specific requirements noted.
3. Provide manufacturer’s installation instructions.
4. For duct silencers/sound attenuators, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control damper installations.
 d. Wiring Diagrams: For power, signal, and control wiring.
C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60 G90.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Air Balance Inc.; a division of Mestek, Inc.
 2. American Warming and Ventilating; a division of Mestek, Inc.
 3. Duro Dyne Inc.
 5. Ruskin Company.
7. Or approved equivalent.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 2000 fpm

D. Maximum System Pressure: 1-inch wg

E. Frame: 0.052-inch- thick, galvanized sheet steel or 0.063-inch- thick extruded aluminum, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: galvanized steel, plated steel or aluminum, mechanically attached to blade.
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Aluminum or Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or synthetic pivot bushings.

2.3 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. McGill AirFlow LLC.
 d. Ruskin Company.
 e. Vent Products Company, Inc.
 f. Or approved equivalent.

 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:

 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

 5. Blades:
a. Single blade up to 6 inches blade width; multiple blades for width over 6 inches.
b. Opposed-blade design for multiple blades dampers.
c. Round or oval ducts: butterfly type.
d. Stiffen damper blades for stability.
e. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze or Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. McGill AirFlow LLC.
 d. Ruskin Company.
 e. Vent Products Company, Inc.
 f. Or approved equivalent.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames: Hat-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Single blade up to 6 inches blade width; multiple blades for width over 6 inches.
 b. Opposed-blade design for multiple blades dampers.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.

7. Bearings:
 a. Oil-impregnated bronze or Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Aluminum.

2.4 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Duro Dyne Inc.
4. McGill AirFlow LLC.
5. Ruskin Company.
7. Young Regulator Company.
8. Greenheck.
9. Or approved equivalent.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. Extruded Aluminum Channel, 0.125 inch thick.
 3. Reinforced corners.

D. Blades:
 1. Multiple blades with maximum blade width of 8 inches.
 2. Parallel-blade design.
 3. Extruded Aluminum.
 4. 0.125 inch thick.

E. Blade Axles: 1/2-inch diameter; hex-shaped Plated steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

2.5 FIRE DAMPERS

A. Manufacturers:
 1. Greenheck.
 3. Nailor Industries Inc.
 4. Ruskin Company.
 5. Or approved equivalent.

B. Fire dampers shall be labeled according to UL 555.

C. Fire Rating: 1-1/2 hours.

D. Provide only dynamic type dampers.
E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

1. Minimum Thickness: 0.052 or 0.138 inch thick as indicated and of length to suit application.
2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

J. Fusible Links: Replaceable, 165 deg F rated.

2.6 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aero-Dyne Sound Control Co.
2. CL WARD & Family Inc.
3. Ductmate Industries, Inc.
4. Duro Dyne Inc.
5. Elgen Manufacturing.
6. Or approved equivalent.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vaness and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.

2.7 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Ductmate Industries, Inc.
3. McGill AirFlow LLC.
4. Pottorf; a division of PCI Industries, Inc.
5. Ventfabrics, Inc.
7. Or approved equivalent.

1. Door:
 a. Double wall, rectangular.
 b. Sheet metal, to match duct material, with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 2-by-2-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.
 f. Size: Not less than 16 inches by 14 inches. Ducts less than 16 inches in height, install with one dimension 16 inches and other dimension 2 inches less than duct width. Install larger sized doors where required for access.

2. Frame: Same material as door, with bend-over tabs and foam gaskets.
3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.8 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Flame Gard, Inc.
3. 3M.
4. Or approved equivalent.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.
2.9 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabsrics, Inc.
5. Or approved equivalent.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch wide, 0.028-inch thick, galvanized steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 30 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 30 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.10 FLEXIBLE DUCTS

A. Manufacturers:

1. Type 8M by Flexmaster U.S.A., Inc.
2. Thermaflex Type MK-E by Flexible Technologies, Inc
3. Hart & Cooley, Inc.
5. Or approved equivalent.

B. Acoustical Insulated Steel Spiral Type:
 1. Comply with SMACNA HVAC Flexible Duct Construction Standards and NFPA 90A.
 2. Construct ducts of corrosion-resistant coated steel spiral that is mechanically locked or permanently bonded to a CPE inner liner film.
 3. Duct shall be factory-insulated with a fiberglass blanket covered with a flame-resistant low permeability metalized vapor barrier jacket. Thermal conductivity of the insulation shall not exceed 0.23 (BTU) (inch)/(hour) (square foot) (degree F) at 75 degrees F mean temperature.
 4. The internal working pressure rating shall be at least 4 inches w.g. positive and 0.5 inches w.g. negative.
 5. The flexible duct assembly shall carry UL 181, Class 1 duct label.
 6. Maximum length shall be 6 feet or less, as dictated by codes. The remainder shall be galvanized sheet metal. Provide flexible duct runs as straight as possible. Provide a minimum installed length of 4 feet at each air terminal.

C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches to suit duct size.

2.11 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.12 WIRE MESH GRILLES

A. Construction: 1/2 inch (12.5 mm) mesh screen with 1 inch (2.5 mm) sheet metal frame, bolted to flanged duct connection.

B. Materials:
 1. Screen: Minimum 18 gauge galvanized steel.
 2. Frame: Minimum 0.040 inch (1.02 mm) thick galvanized sheet steel.
 3. Bolts and nuts: Indoors, galvanized steel; exposed to weather, stainless steel.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft and control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Fire Dampers:
 1. Install dampers in accordance with manufacturer's UL Installation Instructions, labeling, and NFPA 90A at locations indicated on the drawings. Any damper installation that is not in accordance with the manufacturer's UL Installation Instructions must be approved prior to installation.
 2. Dampers must be accessible to allow inspection, adjustment, and replacement of components. The sheet metal contractor shall furnish any access doors in ductwork or plenums required to provide this access. The general contractor shall furnish any access doors required in walls, ceilings, or other general building construction.
 3. Install dampers square and free from racking.
 4. The installing contractor shall provide and install bracing for multiple section assemblies to support assembly weight and to hold against system pressure.
 5. Do not compress or stretch the damper frame into the duct or opening.
 6. Attach multiple damper section assemblies together in accordance with manufacturer's instructions. Install support mullions as reinforcement between assemblies as required.
 7. Handle dampers using the frame or sleeve. Do not lift or move dampers using blades, actuator or jackshaft.

E. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts and as indicated. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install volume dampers at the following locations:
 a. Where indicated on drawings and in details.
 b. Where required for balancing.
 2. Install steel volume dampers in steel ducts.
 3. Install aluminum volume dampers in aluminum ducts.

F. Set dampers to fully open position before testing, adjusting, and balancing.

G. Install test holes at fan inlets and outlets and elsewhere as indicated and in ductwork where required for testing and adjusting.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
1. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
2. At each change in direction and at maximum 50-foot spacing.
3. Upstream from turning vanes.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors at duct connections to equipment, at building expansion joints, at connections between ducts of dissimilar metals and at penetrations of mechanical equipment room walls.
 1. Install flexible connections with 2 inches slack in fabric and minimum movement of 1 inch.

M. Install duct test holes where required for testing and balancing purposes.

N. Install wire mesh screen grilles at refrigerant exhaust air ducts and in other places where indicated. Bolt grilles to flanged connections or ducts at terminations.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Inspect turning vanes for proper and secure installation.
 4. Operate remote damper operators to verify full range of movement of operator and damper.

3.3 MANUFACTURER'S FIELD SERVICES

A. After start-up, and final corrections and balancing of systems, take octave band sound measurements over full audio frequency range in areas adjacent to mechanical equipment rooms, duct and pipe shafts, and other critical locations, as directed.

END OF SECTION 233300
SECTION 23 34 23 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fiberglass Utility Set Centrifugal Exhaust Fans for Laboratory Exhaust.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Wiring Diagrams: For power, signal, and control wiring.

3. Laboratory EF

 a. Provide dimensional drawings and product data on each laboratory exhaust fan assembly.
 b. Provide fan curves for each fan at the specified operation point, with the flow, static pressure and horsepower clearly plotted.
 c. Strictly adhere to QUALITY ASSURANCE requirements, as stated in section 1.4 of this specification.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

D. UL Standard:

 1. For Electrical Components: Provide power ventilators that comply with UL 705.
 2. For Electrical Components and Smoke Control: Provide power ventilators that are listed and comply with UL Power Ventilators for Smoke Control Systems.

F. FIBERGLASS EXHAUST FANS

1. Conformance to ASTM D4167-97 requirements.

1.5 WARRANTY

A. Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights Owner may have under Contract Documents.

1. The warranty of this equipment is to be free from defects in material and workmanship for a period of 12 months from the purchase date. Any units or parts which prove defective during the warranty period will be replaced at the manufacturers’ option when returned to the manufacturer, transportation prepaid.

2. Motor Warranty is warranted by the motor manufacturer for a period of one year. Should motors furnished prove defective during this period, they should be returned to the nearest authorized motor service station.

PART 2 - PRODUCTS

2.1 LABORATORY EXHAUST SYSTEM

A. Manufacturers: Subject to compliance with requirements, available manufacturer offering products that may be incorporated into the Work include:

1. Hartzell Air Movement.

2. Or approved equivalent.

B. General:

1. The belt drive Fiberglass Backward Curved Centrifugal Fan shall be manufactured by Hartzell Air Movement, Series 41, Type FA, ARRG. 10, in Classes I, II, III. sizes as indicated on drawings. Rotation as determined by the drive side of the fan, shall be clockwise or counter-clockwise. Fan housing, for sizes 12 through 36, shall be field rotatable and the discharge shall be any of the eight AMCA standard positions. Sizes 40 through 60 shall be a fixed construction for the rotation and discharge specified. The fan shall be completely assembled, packaged and ready to install.

2. The resin used on the solid fiberglass type FA wheel shall be Dow Derakane 510-A vinylester. Blades shall be backward curved to provide non-loading, highly efficient operation. The wheel shall have a totally encapsulated aluminum core insert for secure attachment to the shaft. The wheel shall be one-piece, resin transfer molded, without hand lay-up or assembly of components. The fan is suitable for temperatures up to 250°F.

3. Fan housing shall be constructed of Ashland Hetron 693 polyester resin and glass fiber with 3% antimony trioxide added to achieve Class I flame spread below 25. All fiberglass surfaces shall be protected with a minimum 10 mil thickness of chemical, flame and ultraviolet resistant resin. The inlet cone shall be solid fiberglass. The entire housing shall have a finish coat of resin to provide superior protection and smooth airflow. All airstream hardware shall be 304 stainless steel. The fan drive base shall be epoxy coated steel.
4. The fan shaft shall be ground and polished carbon steel with an FRP sleeve in the airstream. Bearings shall be heavy-duty, self-aligning, with extended lube tubes for continuous service, with a minimum of 50,000 hours L10 life. A neoprene shaft seal shall be located where the shaft enters the housing with a neoprene shaft slinger between the seal and wheel. V-belt drives shall be sized for continuous service. Each fan shall be belt driven.

5. The fan assembly shall be dynamically balanced at the Hartzell factory prior to shipping. Fans shall be balanced in accordance with AMCA Standard 204-96, fan application category BV-3 (comparable to Grade G6.3). Fans shall be manufactured in accordance with Hartzell's standard quality assurance procedures. Fan performance shall be based on tests conducted in Hartzell's AMCA accredited test laboratory and in accordance with the latest revision of AMCA Standard 210 for air performance and AMCA Standard 300 for sound. Fans shall be licensed to bear the AMCA Certified Seal for Sound and Air Performance.

C. Options and Accessories

1. Weather Cover - Combines guarding of motor and drive as well as providing protection from the weather.
2. Fan assembly shall be designed for a minimum of 125 MPH wind loading, without the use of guy wires.
4. Safety Guards - Fit on inlet or outlet of fan. Made of epoxy coated steel.
5. Vibration Isolators - For horizontal floor mount. Available in rubber-in-shear or spring type.
6. Drain - CPVC bulkhead fitting assembled in housing, 1" female fitting.
7. Inlet Dampers - Used to control volume. Standard construction is available through 7" and 3000 FPM, and is epoxy coated steel.
8. Surfacing Veil - Either Nexus Veil (standard) or C Glass Veil applied to the airstream fan parts, with an additional coat of resin.
9. Electrical Grounding - Air stream surfaces are coated with a carbon rich coating with grounding straps to the motor frame. User must properly ground the equipment at the installation.
10. Motors - OEDP standard. TEFC and other special motors are available upon request.
11. Access Door - Raised, bolted door held in place with stainless steel bolts and gasketed.
12. Inspection Door - Small opening for visual inspection of wheel. Gasketed and held in place with stainless steel bolts.
13. Flanged Inlet - Solid fiberglass inlet flange, available drilled or undrilled.
14. Special Hardware - 316 stainless steel or Monel for special chemical environments.
15. Outlet Dampers - Epoxy coated steel or stainless steel, either parallel or opposed blade type. Solid fiberglass backdraft dampers are also available.
16. Arrg. 1 Sub-Base - Epoxy coated structural base to provide motor and fan support. 9M Sub-Base - Motor sub-base to accommodate larger motor in horizontal position.
17. Abrasion/Erosion Resistant Coating (HartKoate) - Particularly useful when water mist and/or abrasive particles exist in the air stream.
18. Split Housing - Allows removal of the wheel and shaft without distributing the fan inlet.

D. Curb

1. Minimum of 14 gauge of corrosion resistant coated steel and structurally reinforced.
2. Curbs shall be insulated.
3. Roof curb to be 12 inches tall and shall support the perimeter of the exhaust fan base.
4. When properly anchored to the roof structure, the standard curb / plenum / blower assembly shall withstand wind loads of up to 125 mph without additional structural support.

2.2 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install HVAC power ventilators level and plumb.

B. Install units with clearances for service and maintenance.

C. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

D. Lift and support units with manufacturer’s designated lifting or supporting points.

E. Power ventilators shall be installed in strict accordance with manufacturer’s instructions and as indicated on plans.

F. Install units with clearances for service and maintenance in accordance with manufacturer’s operations and maintenance manuals.

G. Coordinate requirement for sloped roof curb to be installed in standing seam roof with architectural drawings.

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories.

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

E. Provide stainless steel guy wire system with turn-buckle for duct extension above fan outlet connected to stainless steel bars equally spaced in annular space per detail on drawings.
3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.5 DEMONSTRATION

A. Engage a factory-authorized server representative to train Owner's maintenance personnel to adjust, operate and maintain the HVAC power ventilators.

END OF SECTION 233423
SECTION 23 37 13 - DIFFUSERS, REGISTERS & GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.

B. Related Sections include the following:

1. Division 8 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.

2. Division 23 Section "Duct Accessories" for fire dampers and volume-control dampers not integral to diffusers, registers, and grilles.

3. Division 23 Section "Testing, Adjusting, and Balancing" for balancing diffusers, registers, and grilles.

1.3 DEFINITIONS

A. Diffuser: Circular, square, or rectangular air distribution outlet, generally located in the ceiling and comprised of deflecting members discharging supply air in various directions and planes and arranged to promote mixing of primary air with secondary room air.

B. Grille: A louvered or perforated covering for an opening in an air passage, which can be located in a sidewall, ceiling, or floor.

C. Register: A combination grille and damper assembly over an air opening.

1.4 SUBMITTALS

A. Product Data: For each product indicated, include the following:

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.

2. Diffuser, Register, and Grille Schedule: Indicate Drawing designation, room location, quantity, model number, size, and accessories furnished.

3. Assembly Drawing: For each type of air outlet and inlet; indicate materials and methods of assembly of components.

B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
C. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.

D. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 DIFFUSER SCHEDULE

A. Square Diffuser.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Price.
 b. Titus.
 c. Anemostat Products; Dynamics Corp. of America.
 d. Carnes Co. Inc.
 e. Or approved equal.

3. Finish: Baked enamel, match existing.

4. Duct Connection: Round or square as required.

5. Face Style: Four cone, square.

7. Pattern: 4 way or as indicated on drawings.

8. Dampers: Aluminum opposed blade with adjusting screw.

9. Accessories: Include the following:
a. Equalizer deflectors.
b. Operating keys.

2.3 REGISTER SCHEDULE

A. Register.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Price.
 b. Titus.
 c. Anemostat Products; Dynamics Corp. of America.
 d. Carnes Co. Inc.
 e. Or approved equal.

3. Finish: Baked enamel, color to match existing.

6. Frame: 1 inch (25 mm) wide.

7. Mounting: Countersunk screw.

8. Damper Type: Aluminum, adjustable opposed-blade assembly.

9. Accessories: Include plaster frame as applicable and damper operating key.

2.4 LINEAR DIFFUSER

A. Linear Diffuser

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Price.
 b. Titus.
 c. Anemostat Products; Dynamics Corp. of America.
 d. Carnes Co. Inc.
3. Finish - Face and Shell: White, Baked enamel.
4. Finish - Pattern Controller: Baked enamel, black.
5. Finish - Tees: Baked enamel, white
6. Slot Width: 1 inch.
7. Number of Slots: Five.
8. Length: One piece construction, Length indicated on floor plans.
11. Basis of Design - Price model SDS Series

2.5 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of panel. It is the responsibility of the contractor to review architectural drawings and provide applicable mounting frame for type of surface or ceiling indicated on architectural drawings. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

D. Coordinate location and installation of security air devices with security ceiling contractor and architectural plans for a complete installation. Installation of security air devices shall be in strict accordance with ceiling manufactures recommendations.

3.3 ADJUSTING
A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION 233713
SECTION 23 38 16 FUME HOOD DUCTWORK AND LAB OVEN VENTS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Listed double-wall laboratory ducts, vents, breeching and chimneys.
 2. Listed fume hood single-wall ducts.

1.3 SUBMITTALS

A. Product Data: For the following:
 1. Listed double-wall ducts, and oven process vents, breeching and chimneys.
 2. Listed single-wall ducts.
 4. Guy wires and connectors.

B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.
 1. Calculations, layout and detailed equipment assembly diagrams shall be provided indicating required dimensions, weights, loads, clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection. Vent design shall be reviewed and certified by a qualified Professional Engineer licensed in the project State. Contractor shall provide provisions for this effort in their bids.

C. Welding certificates.

D. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section “Roof Accessories.”

1.6 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.

1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DOUBLE WALL LABORATORY DUCTS, VENTS, BREECHING AND CHIMNEYS

A. General:

1. Ducts to be non-corroding material. All ductwork within the building envelope is to be under negative pressure at all times. Avoid flex connectors unless absolutely necessary; install and test to be air tight. Extend exhaust stacks above building vortex and provide low loss rain stacks.

2. All duct fan and hood drains: corrosion resistant plastic, glass or type 316 stainless steel.

3. Consultant shall demonstrate that no cross contamination between exhaust fumes and air intakes shall occur. Design modeling may be necessary to demonstrate the avoidance of cross contaminations (ASHRAE Applications Handbook 2003, Ch. 44, or current version.)

4. Provide UL Rating per usage.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Selkirk Commercial Industries. (Basis of design)
2. Heat-Fab, Inc.
3. Metal-Fab, Inc.
4. Or approved equal.

2.2 CHEMICAL LABORATORY FUME HOOD EXHAUST DUCTWORK:

A. Interior Ductwork:

1. Fume hood ductwork: prefabricated single wall, uninsulated, Type 316 stainless steel. Elbows: smooth radius (die formed) or minimum of 5-gore elbows, 3-gore elbows not allowed. Welded joints on vertical risers and connections to fans.

2. Single wall, round spiral lockseam, Type 316 stainless steel ductwork may be used.

3. Small amounts of shop-fabricated single-wall Type 316 stainless steel ductwork will be required for equipment.

2.3 VERTICAL STACKS AND EXTERIOR DUCTWORK:

B. Small amount of shop-fabricated single-wall Type .035”, 316 stainless steel ductwork will be required for equipment connections and other miscellaneous applications.

C. Description: Double-wall metal vents tested according to UL 103 and rated for 1000 deg F continuously, or 1700 deg F for 10 minutes; with neutral or negative flue pressure complying with NFPA 211.

D. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.

1. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.

E. Guying and Bracing Materials

1. Support vents, breeching, chimneys and stacks per manufacturer’s requirements.

2.4 OVEN AND PROCESS DUCTWORK:

1. Non-combustible or per requirements for Class 1 air duct materials, or UL 181.

2. Prefabricated double-wall, insulated, chimney stack. Liner: Type .035”, 316 stainless steel, jacket: .025”, aluminized steel. Insulation: 1 inch thick for 5-6” I.D. and 2” for 8-16” duct. Selkirk Metalbestos Model IPSC1 (5”-6”), Model IPSC2 (8”-16”), Heat Fab, Schebler,
Alternate Brand request or Substitution Request required. Note; For Ignition Oven connecting to fume hood vertical stack, provide 2” thick insulation to match the vertical stack.

3. Fasteners: Rivets, bolts, or sheet metal screws as required by manufacturers recommendations.

4. Sealant: Non-hardening, water resistant, fire resistive, compatible with mating materials, liquid used alone or with tape, or heavy mastic. Foster 30-02 or approved equivalent.

5. Hanger rod: Steel, galvanized, threaded both ends, threaded one end, or continuously threaded.

6. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.

7. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.

8. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.

9. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.

10. Guying and Bracing Materials
 a. Support vents, breeching, chimneys and stacks per manufacturer’s requirements.

PART-3 EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. INSTALLATION OF LISTED DUCTS, VENTS AND CHIMNEYS

B. Install all ducts, vents and breeching, chimneys and stacks per the manufacturer’s guidelines.

C. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.
D. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

E. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.

F. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

G. Lap joints in direction of flow.

3.3 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.

C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 233816
SECTION 23 74 14 - PACKAGED, OUTDOOR ROOFTOP UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged, outdoor, rooftop units in the following configurations:

B. This Section also includes required accessories to be included with the packaged, outdoor, rooftop units such as:

 1. 100% outdoor air damper section.
 a. Field-or-factory mounted.
 b. Filter section.
 c. Outdoor air weatherhood

 2. Integral, space temperature controls and VFD.

 3. Roof curbs.

1.3 DEFINITIONS

A. DDC: Direct-digital controls.

B. ECM: Electrically commutated motor.

C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

D. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design RTU supports to comply with wind and seismic performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Wind-Restraint Performance:
 1. Basic Wind Speed: 115 mph.
 2. Risk Category: II.
 3. Wind Exposure Category: C.

1.5 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation licensed in the project State.
 1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind-Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which RTUs will be attached.
 2. Roof openings
 3. Roof curbs and flashing.
B. Manufacturer Wind Loading Qualification Certification: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 230548 "Vibration Isolation and Wind Restraints for HVAC, Plumbing and Electrical Components."

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Complete fan performance curves for both Supply Air and Exhaust Air, with system operating conditions indicated, as tested in an AMCA Certified Chamber.

D. Sound performance data for both Supply Air and Exhaust Air, as tested in an AMCA Certified chamber.

E. Motor ratings, electrical characteristics and motor and fan accessories.

F. Performance ratings for all chilled water or DX coils.

G. Estimated gross weight of each installed unit.

H. Installation, Operating and Maintenance manual (IOM) for each model.

I. Microprocessor Controller (DDC) specifications to include available options and operating protocols. Include complete data on all factory-supplied input devices.

J. AHRI Certified coil performance ratings with system operating conditions indicated. Ratings shall be in accordance with Standard 410.

K. Field quality-control test reports.

L. Warranty: Special warranty specified in this Section.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fan Belts: One set for each belt-driven fan.
2. Filters: One set of filters for each unit.
1.9 QUALITY ASSURANCE

A. ARI Compliance:
 1. Comply with ARI 203/110 and ARI 303/110 for testing and rating energy efficiencies for RTUs.
 2. Comply with ARI 270 for testing and rating sound performance for RTUs.

B. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigeration system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.

E. UL Compliance: Comply with UL 1995.

F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

G. Certifications
 1. Blowers shall be AMCA Certified for air flow.
 2. Entire unit shall be ETL Certified per U.L. 1995 and bear an ETL sticker.
 3. Coils shall be Recognized Components for ANSI/UL 1995, CAN / CSA C22.2 No 236.05. DX and water coils shall be AHRI Certified per standard 410-2001.
 4. Indirect gas-fired furnace shall be ETL Certified as a component of the ERU. Indirect gas-fired furnace shall be an ETL Recognized Component of the ERU per ANSI Z83.8.

1.10 WARRANTY

A. Manufacturer’s standard warranty for packaged outdoor air-handling unit and controls for eighteen (18) months from date of shipment. Warranty work shall be performed by manufacturer’s factory-trained and factory-employed technician. Warranty does not extend to alterations, modifications, or external components installed after unit is shipped.

1.11 SPECIAL WARRANTY

A. Manufacturer’s standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Compressors: Manufacturer’s standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer’s standard, but not less than 10 years from date of Substantial Completion.
3. Warranty Period for Control Boards: Manufacturer’s standard, but not less than three years from date of Substantial Completion.

1.12 COORDINATION

A. Coordinate size and location of all building penetrations required for installation of each unit and associated plumbing and electrical systems.
B. Coordinate location of water system fittings to ensure correct positioning for connection to the water coil and condensate drain pipe.
C. Coordinate sequencing of construction of associated plumbing, HVAC, electrical supply, roofing contractor.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide a comparable product by one of the following:
 1. Greenheck (Basis of Design)
 3. Trane.
 5. Or approved equivalent.

2.2 SUMMARY

A. The Section describes the requirements for packaged, 100% outdoor rooftop unit containing Electric Direct Expansion Cooling and Gas-fired Heating with hot gas reheat.

B. Unit shall be fully assembled at the factory and consist of an insulated metal cabinet, evaporator coil, hot gas reheat coil, indirect gas-fired furnace, packaged DX system, phase and brownout protection, motorized dampers, curb assembly, filter assembly intake air, supply air blower assembly, and an electrical control center. All specified components and internal accessories factory installed are tested and prepared for single-point high voltage connection except with electric post heat which has dual point power.

2.3 CASING

A. Materials: Formed, double wall insulated metal cabinet, fabricated to permit access to internal components for maintenance.
1. Outside casing: 18 gauge, galvanized (G90) steel meeting ASTM A653 for components that do not receive a painted finish. Pre-painted components as supplied by the factory shall have polyester urethane paint on 18 gauge G60 galvanneal steel. Components that receive a painted finish per A / E specification shall be painted with a polyester urethane powder coat.

2. Internal assemblies: 24 gauge, galvanized (G90) steel except for motor supports which shall be minimum 14 gauge galvanized (G90) steel.

B. Cabinet Insulation: Comply with NFPA 90A and NFPA 90B and erosion requirements of UL 181.

1. Materials: Rigid urethane foam
 a. Thickness: 2 inch (50 mm)
 b. Meets UL94HF-1 flame requirements.
 c. Location and application: Full coverage of entire cabinet exterior to include walls, roof of unit, unit base, and doors.

C. Access panels / doors: Unit shall be equipped with insulated, hinged doors or removable access panels to provide easy access to all major components. Doors and access panels shall be fabricated of 18 gauge galvanized G90 steel or painted galvannealed steel.

D. Supply Air blower assemblies: Blower assembly shall consist of an electric motor and direct-drive fans. Assembly shall be mounted on heavy gauge galvanized steel rails and further mounted on 1.125 inch thick neoprene vibration isolators. Blower motors shall be capable of continuous speed modulation and controlled by a VFD.

E. Evaporator Coil: Evaporator coil shall be AHRI Certified and shall be (silver) soldered or brazed into the compressed refrigerant system. Coil shall be constructed of copper tubing, permanently bonded to aluminum fins and enclosed in a galvanized steel frame. If two compressors are used as components of the unit, then the evaporator coil shall be of "interlaced" configuration, permitting independent operation of either compressor without conflict with the other compressor.

F. Control panel / connections: Units shall have an electrical control center where all high and low voltage connections are made. Control center shall be constructed to permit single-point high voltage power supply connections. RTU shall be equipped with a Unit Disconnect Switch.

G. Condensate drain pan: Drain Pan shall be an integral part of the unit whenever a cooling option is included. Pan shall be formed of welded austenitic stainless steel sheet material and provided with a welded stainless steel drain connection at the front for connection to a
P trap. Drain pan shall be sloped in two directions to provide positive draining and drain connector shall be sealed at penetration through cabinet wall.

H. P trap: If the unit is equipped with a condensate drain pan, contractor shall provide, or fabricate, and install an appropriate P trap, in accordance with all local and area codes and Best Practices

I. Reheat coil with factory installed modulating hot gas reheat valve.

J. Indirect gas furnace

1. Shall be ETL Certified as a component of the unit.

2. Shall have an integral combustion gas blower.

3. Shall be ETL Certified for installation downstream of a cooling coil.

4. Shall have fault sensors to provide fault conditions to optional digital controller or building controls.

5. Shall have 4-pass tubular heat exchangers, constructed of type 409 stainless steel. Heat exchanger tubes shall be installed on the vest plate by means of swaged assembly, welded connections are not acceptable. Heat exchanger tubes shall be supported by a minimum of two fabricated assemblies that support the tubes and also permit expansion and contraction of the tubes.

6. Heat exchanger shall have a 10 year extended warranty.

7. Furnace control shall be 4:1 Modulating.

8. Shall be encased in a weather-tight metal housing with intake air vents. Large, metal lift-off door shall provide easy access to the enclosed vest plate, control circuitry, gas train, burner assembly and exhaust blower.

9. Shall have solid state controls permitting stand-alone operation or control by building controllers.

K. Packaged DX System: Unit shall have an integral compressor(s) and evaporator coil located within the weather-tight unit housing. Condenser coils and appurtenant condenser fan assemblies shall be factory installed as integral subassemblies of the unit and mounted on the exterior of the unit. Condenser fan shall have an external rotor motor with swept fan blades for low sound operation. Motors shall be UL Recognized and CSA Certified. The refrigerant compressor(s) shall be digital hermetic scroll-type and shall be equipped with liquid line filter drier, thermostatic expansion valves (TXV) (s), manual reset high pressure and low pressure cut outs and all appurtenant sensors, service ports and safety devices. Compressed
refrigerant system shall be fully charged with R-410A refrigerant. Each compressor shall be factory-equipped with an electric crankcase heater to boil off liquid refrigerant from the oil.

L. Packaged DX Control and Diagnostics: The Packaged DX system shall be controlled by an onboard digital controller (DDC) that indicates both owner-supplied settings and fault conditions that may occur. The DDC shall be programmed to indicate the following faults:

1. Global alarm condition (active when there is at least one alarm)

2. Supply Air Proving alarm

3. Dirty Filter Alarm

4. Compressor Trip alarm

5. Compressor Locked Out alarm

6. Supply Air Temperature Low Limit alarm

7. Sensor #1 Out of Range (outside air temperature)

8. Sensor #2 Out of Range (supply air temperature)

9. Sensor #3 Out of Range (cold coil leaving air temperature)

M. Phase and brownout protection: Unit shall have a factory-installed phase monitor to detect electric supply phase loss and voltage brown-out conditions. Upon detection of a fault, the monitor shall disconnect supply voltage to all motors.

N. Motorized dampers / Intake Air, Motorized dampers of low leakage type shall be factory installed.

O. Curb Assembly: A curb assembly made of 14 gauge galvanized steel shall be provided by the factory for assembly and installation as part of this division. The curb assembly shall provide perimeter support of the entire unit and shall have duct adapter(s) for supply air. Curb assembly shall enclose the underside of the unit and shall be sized to fit into a recess in the bottom of the unit. Contractor shall be responsible for coordinating with roofing contractor to ensure curb unit is properly flashed to provide protection against weather/moisture penetration. Contractor shall provide and install appropriate insulation for the curb assembly. The curb shall be the height of 14 in.

P. Service receptacle: 120 VAC GFCI service outlet shall be factory-provided and installed by this contractor in a location designated by the A/E. Service outlet requires a dedicated single phase electric circuit. Unit contains a 120 VAC transformer to provide power to service outlet.
Q. 24V/120V Smoke detector: Duct smoke detector is shipped loose for field mounting and wiring in the supply or return air duct. The air duct smoke detector housing shall be UL listed per UL 268A specifically for use in air handling systems. The air duct smoke detector housing shall be suitable for mounting indoors. The detector shall operate at air velocities of 100 feet per minute to 4000 feet per minute (0.5 to 20.32 meters/second). The power supply voltage shall be 20-29 VDC, 24 VAC 50-60 Hz, and 120 VAC 50-60 Hz. The detector shall consist of an alarm initiation contact and two DPDT auxiliary contact closures. WARNING: Duct smoke detectors are NOT a substitute for open area smoke detectors; NOT a substitute for early warning detection; NOT a replacement for a building’s regular fire detection system. Refer to NFPA 72 and 90A for additional information.

2.4 FANS

A. Blower section construction, Supply Air: direct drive motor and blower shall be assembled on a 14 gauge galvanized steel platform and shall be equipped with 1.125 inch thick neoprene vibration isolation devices.

B. Blower assemblies: Shall be statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and horsepower.

C. Fan: Direct drive, airfoil plenum fan with steel wheels statically and dynamically balanced and AMCA certified for air and sound performance.

D. Blower section motor source quality control: Blower performance shall be factory tested for flow rate, pressure, power, air density, rotation speed and efficiency. Ratings are to be established in accordance with AMCA 210, "Laboratory Methods of Testing Fans for Rating".

E. Fan Motor: Comply with requirements in Division 23 Section “Common Motor Requirements for HVAC Equipment.”

2.5 MOTORS

A. General: Blower motors greater than 3/4 horsepower shall be "NEMA Premium" unless otherwise indicated. Compliance with EPAct minimum energy-efficiency standards for single speed ODP and TE enclosures is not acceptable. Motors shall be heavy-duty, permanently lubricated type to match the fan load and furnished at the specified voltage, phase and enclosure.

B. Motors shall be 60 cycle, 3 phase 208 volts.

2.6 COILS

A. Supply-Air Refrigerant Coil:

1. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.

2. Coil Split: Interlaced.

B. Hot-Gas Reheat Refrigerant Coil:
 1. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

2.7 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: Varies based on tonnage. Consult with Engineer during shop drawing review. Provide appropriate redundancy based on tonnage.

B. Compressor: Hermetic, scroll, variable speed, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

C. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.
 9. Low-ambient kit high-pressure sensor.

2.8 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
 1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Aluminized steel.
 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

C. Heat-Exchanger and Drain Pan: Stainless steel.

D. Power Vent: Integral, motorized centrifugal fan interlocked with gas valve with vertical extension.

E. Safety Controls:
 1. Gas Control Valve: Two stage.

2.9 AIR FILTRATION

A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 1. Pleated: 2-inch thick, minimum 35 percent arrestance, and MERV 8.

2.10 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for 0 to 100 percent outdoor air, with motorized damper filter.

B. Outdoor Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
 1. Damper Motor: Modulating with adjustable minimum position.
 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.11 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.12 CONTROLS

A. Packaged, outdoor rooftop units shall be supplied with a unit-mounted, factory installed unitary controller utilizing “open” control language protocol; BACNet.
 1. The unitary controller shall be computer-commissioned and tested before shipping from the factory.
 2. The unitary controller shall have volatile-memory backup.
 3. The unit shall be constructed so that it can function as a stand-alone heating and cooling system controlled by factory-supplied controllers, thermostats and sensors or it can be operated as a heating and cooling system controlled by a Building Management System (BMS). This unit shall be controlled by a factory-installed microprocessor programmable controller (DDC) that is connected to various optional sensors.
 4. Unit shall incorporate a DDC controller with integral LCD screen that provides text readouts of status. DDC controller shall have a built-in keypad to permit operator to access read-out screens without the use of ancillary equipment, devices or software. DDC controllers that require the use of equipment or software that is not factory-installed in the unit are not acceptable. Alarm readouts consisting of flashing light codes are not acceptable. Owner-specified ventilating conditions can be input by means of pushbuttons.
5. Variable Frequency Drive (VFD): unit shall have factory installed variable frequency drive for modulation of the exhaust air blower assembly for balancing purposes. The VFD shall be factory-programmed for unit-specific requirements and shall not require additional field programming to operate. Provide VFD with by-pass. See VFD specification for additional information.

B. Manufacturer shall provide the following accessories:

1. Control-voltage transformer.

2. Wall-mounted thermostat or sensor with the following features:
 b. Automatic changeover.
 c. Adjustable deadband.
 d. Exposed set point.
 e. Exposed indication.
 f. Degree F indication.
 g. Unoccupied-period-override push button.

3. Wall-mounted humidistat or sensor.

C. Factory installed, DDC Controller shall have the following capabilities:

1. Controller shall have volatile-memory backup.

2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
 b. Fire Alarm Control Panel Interface: Provide control interface to coordinate with existing fire alarm system.
 c. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply air temperature is less than 40 deg F.

3. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.

4. Unoccupied Period:
 a. Heating Setback: 5 deg F.
 b. Cooling Setback: 5 deg F.
 c. Override Operation: Two hours.

5. Supply Fan Operation:
 a. Occupied Periods: Run fan continuously.
 b. Unoccupied Periods: Cycle fan to maintain setback temperature.

6. Fixed Minimum Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 100 percent.
b. Unoccupied Periods: Close the outdoor-air damper.

2.13 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Supply-Air Smoke Detector: Provide smoke detector sensing in the return-air section for all equipment with supply air quantities equaling 2,000 CFM or greater.

C. Low Temperature Thermostat.

D. Discharge Air Temperature Sensor.

E. Motorized Outside Air Damper.

F. Through the base provisions for the following (unless indicated as being routed through unit exterior on contract drawings): Electrical power and natural gas piping.

G. Clogged Filter/Fan Failure Switch: Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

2.14 ROOF CURBS

A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 2 inches.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.

B. Curb Height: 14 inches.

C. Wind Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site.
2.15 CAPACITIES AND CHARACTERISTICS

A. Refer to contract drawings for capacities and characteristics.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

3.3 CONNECTIONS

A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

B. Install piping adjacent to RTUs to allow service and maintenance.

1. Gas Piping: Comply with applicable requirements in Section 221123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service. Provide gas pressure regulator for all units capable of converting inlet PSI indicated on the drawings to 7 to 14 inches of water column outlet at volumetric rate required for gas heat exchanger. Contractor shall pipe regulator in accordance with manufacturer's installation manual.

C. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
1. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.

C. Tests and Inspections:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer’s written instructions and do the following:

1. Inspect for visible damage to unit casing.
2. Inspect for visible damage to furnace combustion chamber.
3. Inspect for visible damage to compressor, coils, and fans.
4. Inspect internal insulation.
5. Verify that labels are clearly visible.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Verify that filters are installed.
9. Clean condenser coil and inspect for construction debris.
10. Clean furnace flue and inspect for construction debris.
11. Connect and purge gas line.
12. Remove packing from vibration isolators.
13. Inspect operation of barometric relief dampers.
14. Verify lubrication on fan and motor bearings.
15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
16. Adjust fan belts to proper alignment and tension.
17. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor’s startup report.

18. Inspect and record performance of interlocks and protective devices; verify sequences.
19. Operate unit for an initial period as recommended or required by manufacturer.
20. Calibrate thermostats.
22. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
23. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.

24. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
25. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Outdoor-air intake volume.

26. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

27. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Smoke and firestat alarms.

28. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.
B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

END OF SECTION 237414
SECTION 23 81 29 – VARIABLE REFRIGERANT FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes complete VRF HVAC system(s) including, but not limited to the following components to make a complete operating system(s) according to requirements indicated:

1. Indoor, exposed, ceiling-mounted units cassette units
2. System controls.
3. System refrigerant and oil.
4. System condensate drain piping.
5. System refrigerant piping.
6. Metal hangers and supports.
7. Fastener systems.
8. Miscellaneous support materials.
9. Piping and tubing insulation.
10. System control cable and raceways.

1.2 DEFINITIONS

A. Air-Conditioning System Operation: System capable of operation with all zones in cooling only.

B. Heat-Pump System Operation: System capable of operation with all zones in either heating or cooling, but not with simultaneous heating and cooling zones that transfer heat between zones.

C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

D. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

E. Two-Pipe System Design: One refrigerant vapor line and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One refrigerant liquid line and refrigerant vapor line connect HRCUs to associated indoor units. HRCUs used in two pipe systems act as an intermediate heat exchanger and include diverting valves and gas/liquid separators to move high and low pressure refrigerant between indoor units.

F. VRF: Variable refrigerant flow.

1.3 ACTION SUBMITTALS

A. Product data.

B. Shop Drawings: For VRF HVAC systems.
1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
4. Include diagrams and details of refrigerant piping and tubing showing installation requirements for manufacturer-furnished divided flow fittings.
5. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittals:
 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
 2. Include design calculations with corresponding diagram of refrigerant piping and tubing sizing for each system installed.
 3. Include design calculations with corresponding floor plans indicating that refrigerant concentration limits are within allowable limits of ASHRAE 15 and governing codes.
 4. Include calculations showing that system travel distance for refrigerant piping and controls cabling are within horizontal and vertical travel distances set by manufacturer. Provide a comparison table for each system installed.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, sections, and details, drawn to scale, using input from installers of the items involved.

B. Qualification Data:
 1. For Installer.
 2. For VRF HVAC system manufacturer.
 3. For VRF HVAC system provider.

C. Product Certificates: For each type of product.

D. Product test reports.

E. Source quality-control reports.

F. Field quality-control reports.

G. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
2. Program Software Backup: On CD or DVD, USB media, or approved cloud storage platform, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.6 QUALITY ASSURANCE

A. Factory-Authorized Service Representative Qualifications:

1. Authorized representative of, and trained by, VRF HVAC system manufacturer.
2. In-place facility located within 100 miles of Project.
3. Demonstrated past experience with products being installed for period within five consecutive years before time of bid.
4. Demonstrated past experience on five projects of similar complexity, scope, and value.
 a. Each person assigned to Project shall have demonstrated past experience.
5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
6. Service and maintenance staff assigned to support Project during warranty period.
7. Product parts inventory to support ongoing system operation for a period of not less than five years after Substantial Completion.
8. VRF HVAC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

B. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by VRF HVAC system manufacturer.

1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
2. Installer certification shall be valid and current for duration of Project.
3. Retain copies of Installer certificates on-site and make available on request.
4. Each person assigned to Project shall have demonstrated past experience.
 a. Demonstrated past experience with products being installed for period within five consecutive years before time of bid.
 b. Demonstrated past experience on five projects of similar complexity, scope, and value.
5. Installers shall have staffing resources of competent, trained, and experienced full-time employees that are assigned to execute work according to schedule.

C. ISO Compliance: System equipment and components furnished by VRF HVAC system manufacturer shall be manufactured in an ISO 9001 and ISO 14001 facility.

D. A full charge of R-410A for the condensing unit only shall be provided in the condensing unit.

E. The units shall be listed by Electrical Testing Laboratories (ETL) and bear the ETL label.

F. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
G. All units must meet or exceed the 2010 Federal minimum efficiency requirements and the ASHRAE 90.1 efficiency requirements for VRF systems. Efficiency shall be published in accordance with the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 1230.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace equipment and components that fail(s) in materials or workmanship within specified warranty period.

1. Warranty Period:
 a. For Compressor: Six years from date of Substantial Completion.
 b. For Labor: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Mitsubishi – City Multi VRF (Basis of Design) or approved equal per Substitution specification. Provide S-Series system shall consist of the PUMY outdoor unit, multiple CITY MULTI indoor units, and M-NET DDC (Direct Digital Controls). The PUMY outdoor unit shall be a horizontal discharge, 208/230 volt, single-phase unit. Each CITY MULTI indoor unit or group of CITY MULTI indoor units shall be independently controlled.

2.2 SYSTEM DESCRIPTION

A. Direct-expansion (DX) VRF HVAC system(s) with variable capacity in response to varying cooling and heating loads. System shall consist of multiple indoor units, outdoor unit(s), piping, controls, and electrical power to make complete operating system(s) complying with requirements indicated.

1. Two-pipe system design.
2. System operation, heat pump (Heating or Cooling, not simultaneous) as indicated on Drawings.
3. Each system with one refrigerant circuit shared by all indoor units connected to system.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. AHRI Compliance: System and equipment performance certified according to AHRI 1230.

D. ASHRAE Compliance:

1. ASHRAE 15: For safety code for mechanical refrigeration.
2. ASHRAE 62.1: For indoor air quality.
3. ASHRAE 135: For control network protocol with remote communication.
4. ASHRAE/IES 90.1 Compliance: For system and component energy efficiency.

E. UL Compliance: Comply with UL 1995.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer or specialist, as defined in Section 014000 "Quality Requirements," to design complete and operational VRF HVAC system(s) complying with requirements indicated. This is required for manufacturers other than the Basis of Design manufacturer.

1. Provide system refrigerant calculations.
 a. Refrigerant concentration limits shall be within allowable limits of ASHRAE 15 and governing codes.
 b. Indicate compliance with manufacturer’s maximum vertical and horizontal travel distances. Prepare a comparison table for each system showing calculated distances compared to manufacturer’s maximum allowed distances.

2. Include a mechanical ventilation system and gas detection system as required to comply with ASHRAE 15 and governing codes.

3. System Refrigerant Piping and Tubing:
 a. Arrangement: Arrange piping to interconnect indoor units and outdoor unit(s) in compliance with manufacturer requirements and requirements indicated.
 b. Routing: Conceal piping above ceilings and behind walls to maximum extent possible.
 c. Sizing: Size piping system, using a software program acceptable to manufacturer, to provide performance requirements indicated. Consider requirements to accommodate future change requirements.

4. System Controls:
 a. Network arrangement.
 b. Network interface with other building systems.
 c. Product selection.
 d. Sizing.

B. Service Access:

1. Provide and document service access requirements.
2. Locate equipment, system isolation valves, and other system components that require service and inspection in easily accessible locations. Avoid locations that are difficult to access if possible.
3. Where serviceable components are installed behind walls and above inaccessible ceilings, provide finished assembly with access doors or panels to gain access. Properly size the openings to allow for service, removal, and replacement.
4. If less than full and unrestricted access is provided, locate components within an 18-inch reach of the finished assembly.
5. Where ladder access is required to service elevated components, provide an installation that provides for sufficient access within ladder manufacturer’s written instructions for use.
6. Comply with OSHA regulations.

C. System Design and Installation Requirements:
 1. Design and install systems indicated according to manufacturer's recommendations and written instructions.
 2. Where manufacturer's requirements differ from requirements indicated, contact Architect for direction. The most stringent requirements should apply unless otherwise directed in writing by Architect.

D. Isolation of Equipment: Provide isolation valves to isolate each indoor unit and outdoor unit for service, removal, and replacement without interrupting system operation.

E. System Capacity Ratio: The sum of connected capacity of all indoor units shall be within the following range of outdoor-unit rated capacity:
 1. Range acceptable to manufacturer.

F. System Turndown: Stable operation down to 20 percent of outdoor-unit capacity.

G. System Auto Refrigerant Charge: Each system shall have an automatic refrigerant charge function to ensure the proper amount of refrigerant is installed in system.

H. Outdoor Conditions:
 1. Suitable for outdoor ambient conditions encountered.
 a. Design equipment and supports to withstand wind loads of governing code.

I. Sound Performance: Sound levels generated by operating HVAC equipment shall be within requirements indicated.
 1. Indoor: Within design guidelines of "2015 ASHRAE HANDBOOK- HVAC Applications."
 2. Outdoor: Within ordinance of governing authorities.

J. Thermal Movements: Allow for controlled thermal movements from ambient, surface, and system temperature changes.

K. Capacities and Characteristics: As indicated on Drawings.

2.4 INDOOR, RECESSED, CEILING-MOUNTED UNITS

A. The PLFY-P**NCMU-ER4 shall be a four-way cassette style indoor unit that recesses into the ceiling with a ceiling grille. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, an emergency operation function and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory. Factory-assembled and tested complete unit...
with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Unit Cabinet:

1. The cabinet shall be a compact 22-7/16" wide x 22-7/16" deep so it will fit within a standard 24" square suspended ceiling grid.

2. The cabinet panel shall have provisions for a field installed filtered outside air intake.

3. Four-way grille shall be fixed to bottom of cabinet allowing two, three or four-way blow.

C. Fan:

1. The indoor fan shall be an assembly with a turbo fan direct driven by a single motor.

2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.

3. The indoor fan shall consist of three (3) speeds, Low, Mid, and High.

4. The indoor unit shall have an adjustable air outlet system offering 4-way airflow, 3-way airflow, or 2-way airflow.

5. The auto air swing vanes shall be capable of automatically swinging up and down for uniform air distribution.

D. Filter:

1. Return air shall be filtered by means of a long-life washable filter.

E. Coil:

1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.

2. The tubing shall have inner grooves for high efficiency heat exchange.

3. All tube joints shall be brazed with phos-copper or silver alloy.

4. The coils shall be pressure tested at the factory.

5. A condensate pan and drain shall be provided under the coil.

6. The unit shall be provided with an integral condensate lift mechanism that will be able to raise drain water 19-3/4" inches above the condensate pan.

7. Both refrigerant lines to the PLFY indoor units shall be insulated in accordance with the installation manual.

F. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.

2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).

G. Controls:

1. This unit shall use controls provided by Mitsubishi Electric to perform functions necessary to operate the system.

2. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.

3. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F – 9.0°F adjustable deadband from set point.

4. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.

5. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

H. Outdoor Air Ventilation Connection: Sheet metal knockout for optional connection to outdoor air ventilation duct.

I. Unit Accessories:

1. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.

J. Unit Controls:

1. Enclosure: Manufacturer’s standard configurable digital control, and suitable for indoor locations. Field mounted. Hitachi Model CIW01 – Wired Zone Controller, one for each evaporator.

2. Features and Functions:

 a. Backlit display
 b. Built-in thermistor
 c. Standard wall controller
 d. Controls temperature, mode, fan speed
 e. Seven-day timer with multiple setpoints
 f. Controls up to 16 indoor units
 g. Built-in 23-hour timer
 h. Room name and service company name
 i. Programmable
 j. Help menus and error code diagnosis
 k. Large LCD display permits users to see the
l. operating conditions and settings
m. The timer can be set at half-hour intervals
n. Monitors the operating conditions in the system, and an alarm is issued if a problem occurs.
o. A “self-diagnosis function” checks for problems on:

1. printed boards in indoor and outdoor units
2. Temperature range limit
3. Individual function lockout (mode, temperature, fan speed)

3. Communication: Network communication with other indoor units and outdoor unit(s). provide Hitachi model VRF Smart Gateway.
4. Cable and Wiring: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
5. Field Connection: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

K. Unit Electrical:

1. Enclosure: Manufacturer’s standard, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer’s standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.

2.5 OUTDOOR, AIR-SOURCE HEAT-PUMP UNITS

A. Description: The PUMY outdoor units shall be equipped with multiple circuit boards that interface to the M-NET controls system and shall perform all functions necessary for operation. The outdoor unit shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory.

B. The sum of connected capacity of all CITY MULTI indoor units shall range from 50% to 130% of outdoor rated capacity.

C. Outdoor unit shall have a sound rating no higher than 59 dB(A).

D. Both refrigerant lines from the outdoor unit to indoor units shall be individually insulated.

E. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.

F. The outdoor unit shall have a high pressure safety switch, low pressure safety switch and over-current protection and DC bus protection.

G. The outdoor unit shall have the ability to operate with a maximum height difference of 98 feet for the PUMY-P36NHMU (-BS) & PUMY-P48NHMU (-BS) and 164 feet for the PUMY-P60NKMU (-BS) and have a total refrigerant tubing length of 393 feet for the PUMY-P36NHMU (-BS) &
PUMY-P48NHMU (-BS) and 492 feet for the PUMY-P60NKMU (-BS). The greatest length is not to exceed 262 feet between the outdoor unit and the CITY MULTI indoor units and shall not require line size changes nor traps.

H. The outdoor unit shall have rated performance for heat operation at 0°F for the PUMY-P36NHMU (-BS) & PUMY-P48NHMU (-BS) and -4°F for the PUMY-P60NKMU (-BS) ambient temperature without additional low ambient controls.

I. The outdoor unit shall be capable of cooling operation down to 23°F outdoor ambient without additional low ambient controls.

J. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.

K. Unit Cabinet:

L. The casing shall be fabricated of galvanized steel, bonderized and finished with a powder coated baked enamel.

M. R410A refrigerant shall be required for all S-Series outdoor unit systems.

N. Compressor and Motor Assembly:

1. The compressor shall be a single high performance, inverter driven, modulating capacity scroll compressor.
2. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable down to 41% of rated capacity for the PUMY-P36NHMU (-BS), 33% for the PUMY-P48NHMU (-BS), and 29% for the PUMY-P60NKMU (-BS).
3. The compressor shall be equipped with an internal thermal overload.
4. The compressor shall be mounted to avoid the transmission of vibration.

O. Condenser Coil Assembly:

1. The outdoor coil shall be of nonferrous construction with lanced or corrugated fins on copper tubing.
2. The coil fins will have a factory applied corrosion resistant blue-fin finish.
3. The coil shall be protected with an integral metal guard.
4. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.

P. Condenser Fan and Motor Assembly:

1. Fan(s): Propeller type.
2. The unit shall be furnished with two direct drive, variable speed motors.
3. The fans will be forward curved type blades for quiet operation.
4. The fan motor shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.
5. The fan motor shall be mounted for quiet operation.
6. The fan shall be provided with a raised guard to prevent contact with moving parts.
7. The outdoor unit shall have horizontal discharge airflow.
Q. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

R. Unit Electrical:
 1. Enclosure: Metal, similar to enclosure, and suitable for unprotected outdoor locations.
 2. Field Connection: Single point connection to power entire unit and integral controls.
 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 6. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.
 7. The outdoor unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 8. The unit shall be capable of satisfactory operation within voltage limitations of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)
 9. The outdoor unit shall be controlled by integral microprocessors.
 10. The control circuit between the indoor units and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair, non-polar shielded cable to provide total integration of the system.

S. Electrical and Controls:

The CMCN shall operate at 30VDC. Controller power and communications shall be via a common non-polar communications bus.

T. Wiring:

 1. Control wiring shall be installed in a daisy chain configuration from indoor unit to indoor unit, to the BC controller (main and subs, if applicable) and to the outdoor unit. Control wiring to remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.

 2. Control wiring for the Smart ME remote controller shall be from the remote controller to the first associated indoor unit (TB-5) M-NET connection. The Smart ME remote controller shall be assigned an M-NET address.

 3. Control wiring for the Simple MA and Wireless MA remote controllers shall be from the remote controller (receiver) to the first associated indoor unit (TB-15) then to the remaining associated indoor units (TB-15) in a daisy chain configuration.

 4. Control wiring for centralized controllers shall be installed in a daisy chain configuration from outdoor unit to outdoor unit, to the system controllers (centralized controllers and/or integrated web based interface), to the power supply.

 5. The AE-200, AE-50, and EB-50GU centralized controller shall be capable of being networked with other AE-200, AE-50, and EB-50GU centralized controllers for centralized control.
U. Wiring type:

1. Wiring shall be 2-conductor (16 AWG), twisted, stranded, shielded wire as defined by the Diamond System Builder output.

2. Network wiring shall be CAT-5 with RJ-45 connection.

V. Unit Hardware: Zinc-plated steel, or stainless steel. Coat exposed surfaces with additional corrosion-resistant coating if required to prevent corrosion when exposed to salt spray test for 1000 hours according ASTM B 117.

W. Unit Piping:

1. Unit Tubing: Copper tubing with brazed joints.
2. Unit Tubing Insulation: Manufacturer’s standard insulation, of thickness to prevent condensation.
3. Field Piping Connections: Manufacturer’s standard.
4. Factory Charge: Dehydrated air or nitrogen.
5. Testing: Factory pressure tested and verified to be without leaks.

PART 3 - CONTROLS

3.1 CITY MULTI CONTROLS NETWORK

The CITY MULTI Controls Network (CMCN) consists of remote controllers, centralized controllers, and/or integrated web based interface communicating over a high-speed communication bus. The CITY MULTI Controls Network shall support operation monitoring, scheduling, occupancy, error email distribution, personal web browsers, tenant billing, online maintenance support, and integration with Building Management Systems (BMS) using either LonWorks® or BACnet® interfaces. The below figure illustrates a sample CMCN System Configuration. Provide PAR-33MAA-J remote controllers. See capabilities below;

A. Basic Operations

1. On/Off
2. Operation Mode: Cool, Dry, Fan, Heat, Auto (Dual or Single set point)
3. Set Temperature
4. Fan Speed
5. Daylight Savings Time (DST)

B. Vane setting: Auto, Step 1-5, Swing

C. Louver: Off, Swing On

D. Vent. (Lossnay): Off, Low, High

1. Manual vane angle: No Setting, Step 1-5, Draft reduction, All outlet
 a. Draft reduction mode keeps the vane angle more horizontal than the angle of Step 1

E. Restriction

1. Set Temperature range limit
2. Operation lock: On/Off, Mode, Set Temp, Vane
F. High power
 1. Operate at higher-than-normal capacity to bring room to set temperature quickly for up to 30 minutes

G. No Occupancy Auto-OFF
 1. 3D i -See sensor required

H. On
 1. Set On Time in 5-minute increments
 2. Set Off Time in 5-minute increments
 3. Repeat daily
 4. Home screen display icon

I. Auto-Off timer
 1. Automatically turns unit off after preset time
 2. Time range of 30 to 240 minutes in 10-minute increments
 3. Home screen display icon

J. Weekly timer
 1. Set each day Monday through Sunday
 2. 1 to 4 time periods per day in 5-minute increments
 3. Set Mode: On/Off/Auto (Dual set point)
 4. On/Off/Auto
 5. Set Temperature

K. Outdoor Unit silent mode
 1. Schedulable: Mon, Tue, Wed, Thu, Fri, Sat, Sun
 2. Start/Stop times in 5-minute increments
 3. Silent Levels: Normal, Middle, Quiet

L. Energy saving features:
 1. Automatic return to preset temperature setpoint if set point is changed from the remote controller after a preset time range
 a. Cool preset temp: Cool, Dry, Auto-Cool
 c. Range of 30 to 120 minutes in 10-minute increments
 2. Energy-saving Operation Schedule
 a. Operation schedule
 b. Four daily patterns with time periods in 5-minute increments and energy-saving rate 0% to 90%
 c. 7 day programming

M. Night setback
 1. Starts Heat/Cool operation when room temperature exceeds preset temperature range
 2. Adjustable time range in 5-minute increments
PART 4 REFRIGERANT

4.1 SYSTEM REFRIGERANT AND OIL

A. Refrigerant:
 1. As required by VRF HVAC system manufacturer for system to comply with performance requirements indicated.
 2. ASHRAE 34, Class A1 refrigerant classification.

B. Oil:
 1. As required by VRF HVAC system manufacturer and to comply with performance requirements indicated.

4.2 SYSTEM CONDENSATE DRAIN PIPING

A. If more than one material is listed, material selection is Contractor's option.

B. Copper Tubing:
 1. Drawn-Temper Tubing: According to ASTM B 88, Type L

4.3 SYSTEM REFRIGERANT PIPING

A. Comply with requirements in Section 232300 "Refrigerant Piping" for system piping requirements.

B. Refrigerant Piping:
 1. Copper Tube: ASTM B 280, Type ACR.
 3. Brazing Filler Metals: AWS A5.8/A5.8M.
C. Refrigerant Tubing Kits:
 1. Furnished by VRF HVAC system manufacturer.
 2. Factory-rolled and -bundled, soft-copper tubing with tubing termination fittings at each end.
 3. Standard one-piece length for connecting to indoor units.
 4. Pre-insulated with flexible elastomeric insulation of thickness to comply with governing energy code and sufficient to eliminate condensation.
 5. Factory Charge: Dehydrated air or nitrogen.

D. Divided-Flow Specialty Fittings: Where required by VRF HVAC system manufacturer for proper system operation, VRF HVAC system manufacturer shall furnish specialty fittings with identification and instructions for proper installation by Installer.

E. Refrigerant Isolation Ball Valves:
 1. Description: Uni-body full port design, rated for maximum system temperature and pressure, and factory tested under pressure to ensure tight shutoff. Designed for valve operation without removing seal cap.
 2. Seals: Compatible with system refrigerant and oil. Seal service life of at least 20 years.
 3. Valve Connections: Flare or sweat depending on size.

4.4 METAL HANGERS AND SUPPORTS

A. Copper Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized or copper-coated steel.

B. Plastic Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, galvanized-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized steel

4.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded, zinc-coated steel stud, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Indoor Applications: Zinc-coated steel.
 2. Outdoor Applications: Stainless steel.
4.6 MISCELLANEOUS SUPPORT MATERIALS

A. Grout: ASTM C 1107, factory-mixed and packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

B. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; galvanized.

C. Threaded Rods: Continuously threaded. Zinc-plated steel or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar material as rods.

4.7 PIPING AND TUBING INSULATION

A. Comply with requirements in Section 230719 "HVAC Piping Insulation" for system piping insulation requirements.

B. Condensate Drain Piping and Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
 b. Indoors: 1 inch thick.
 c. Outdoors: 1 inch thick.
 2. Field-Applied Jacket:
 a. Concealed: None required.
 b. Indoors, Exposed to View: None required
 c. Outdoors, Exposed to View: Aluminum, smooth, 0.020 inch thick jacket.

C. Refrigerant Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
 b. Indoors: 1 inch thick.
 c. Outdoors: 1 inch thick.
 2. Field-Applied Jacket:
 a. Concealed: None required.
 b. Indoors, Exposed to View: None required.
 c. Outdoors, Exposed to View: Aluminum, smooth, 0.020 inch thick jacket.

D. Flexible Elastomeric Insulation Adhesive: Comply with MIL-A-24179A, Type II, Class I.
E. PVC Jacket Adhesive: Compatible with PVC jacket.

F. Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

4.8 SYSTEM CONTROL CABLE AND RACEWAYS

A. Low-Voltage Control Cabling:
 1. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.

B. TIA-485A Network Cabling:
 1. Standard Cable: NFPA 70, Type CMG.
 2. Plenum-Rated Cable: NFPA 70, Type CMP.

C. Ethernet Network Cabling: TIA-568-C.2 Category, 66a cable with RJ-45 connectors.

D. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for control wiring and cable raceways.

4.9 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect factory-assembled equipment.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports for historical record. Submit reports only if requested.

PART 5 - EXECUTION

5.1 EQUIPMENT INSTALLATION

A. Clearance:
 1. Maintain manufacturer's recommended clearances for service and maintenance.
 2. Maintain clearances required by governing code.

B. Loose Components: Install components, devices, and accessories furnished by manufacturer, with equipment, that are not factory mounted.
 1. Loose components shall be installed by manufacturer's service representative. Retain "Equipment Restraint Installation" Paragraph below for installation of equipment with seismic restraints, without vibration isolation devices, and without concrete bases.
C. Equipment Restraint Installation: Install equipment with seismic-restraint device. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

D. Indoor Unit Installations:

1. Install units to be level and plumb while providing a neat and finished appearance.
2. Unless otherwise required by VRF HVAC system manufacturer, support ceiling-mounted units from structure above using threaded rods; minimum rod size of 3/8 inch.
3. Adjust supports of exposed and recessed units to draw units tight to adjoining surfaces.
4. Protect finished surfaces of ceilings, floors, and walls that come in direct contact with units. Refinish or replaced damaged areas after units are installed.
5. In rooms with ceilings, conceal piping and tubing, controls, and electrical power serving units above ceilings.
6. In rooms without ceiling, arrange piping and tubing, controls, and electrical power serving units to provide a neat and finished appearance.
7. Provide lateral bracing if needed to limit movement of suspended units to not more than 0.25 inch.
8. For floor- and wall-mounted units that are exposed, conceal piping and tubing, controls, and electrical power serving units within walls.
9. Attachment: Install hardware for proper attachment to supported equipment.
10. Grouting: Place grout under equipment supports and make bearing surface smooth.

E. Outdoor Unit Installations:

1. Install units to be level and plumb while providing a neat and finished appearance.
2. Install outdoor units on support structures indicated on Drawings.
3. Pad-Mounted Installations: Install outdoor units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete. Section 033053 "Miscellaneous Cast-in-Place Concrete."
 a. Attachment: Install anchor bolts to elevations required for proper attachment to supported equipment.
 b. Grouting: Place grout under equipment supports and make bearing surface smooth.
4. Roof-Mounted Installations: Install outdoor units on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, stainless-steel fasteners.

5.2 GENERAL REQUIREMENTS FOR PIPING AND TUBING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping and tubing systems. Install piping and tubing as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping and tubing in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping and tubing at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping and tubing above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping and tubing to permit valve servicing.

F. Install piping and tubing at indicated slopes.

G. Install piping and tubing free of sags.

H. Install fittings for changes in direction and branch connections.

I. Install piping and tubing to allow application of insulation.

J. Install groups of pipes and tubing parallel to each other, spaced to permit applying insulation with service access between insulated piping and tubing.

K. Install sleeves for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

L. Install escutcheons for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

5.3 CONDENSATE DRAIN PIPE AND TUBING INSTALLATION

A. General Requirements for Drain Piping and Tubing:

1. Install a union in piping at each threaded unit connection.
2. Install an adjustable stainless-steel hose clamp with adjustable gear operator on unit hose connections. Tighten clamp to provide a leak-free installation.
3. If required for unit installation, provide a trap assembly in drain piping to prevent air circulated through unit from passing through drain piping. Comply with more stringent of the following:
 a. Details indicated on Drawings.
 b. Manufacturer's requirements.
 c. Governing codes.
 d. In the absence of requirements, comply with requirements of ASHRAE handbooks.
4. Extend drain piping from units with drain connections to drain receptors as indicated on Drawings. If not indicated on Drawings, terminate drain connection at nearest accessible location that is not exposed to view by occupants.
5. Provide each 90-degree change in direction with a Y- or T-fitting. Install a threaded plug connection in the dormant side of fitting or future use as a service cleanout.

B. Gravity Drains:

1. Slope piping from unit connection toward drain termination at a constant slope of not less than two percent.

C. Pumped Drains:
1. If unit condensate pump or lift mechanism is not included with an integral check valve, install a full-size check valve in each branch pipe near unit connection to prevent backflow into unit.

5.4 HYDRONIC PIPING AND TUBING INSTALLATION

A. Comply with requirements for hydronic pipe and tubing specified in Section 232113 "Hydronic Piping."

B. Comply with requirements for hydronic specialties specified in Section 232116 "Hydronic Piping Specialties."

C. Comply with requirements for ball valves specified in Section 230523.12 "Ball Valves for HVAC Piping."

D. Comply with requirements for butterfly valves specified in Section 230523.13 "Butterfly Valves for HVAC Piping."

E. Comply with requirements for check valves specified in Section 230523.14 "Check Valves for HVAC Piping."

F. Install continuous-thread hanger rods and elastomeric hangers of size required to support equipment weight.
 1. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC." Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

G. Where installing piping and tubing adjacent to equipment, allow space for service and maintenance.

5.5 REFRIGERANT PIPING AND TUBING INSTALLATION

A. Refrigerant Tubing Kits:
 1. Unroll and straighten tubing to suit installation. Deviations in straightness of exposed tubing shall be unnoticeable to observer.
 2. Support tubing using hangers and supports indicated at intervals not to exceed 5 feet. Minimum rod size, 1/4 inch (6.4 mm).
 3. Prepare tubing ends and make mating connections to provide a pressure tight and leak-free installation.

B. Install refrigerant piping according to ASHRAE 15 and governing codes.

C. Select system components with pressure rating equal to or greater than system operating pressure.

D. Install piping as short and direct as possible, with a minimum number of joints and fittings.
E. Arrange piping to allow inspection and service of equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

F. Install refrigerant piping and tubing in protective conduit where installed belowground.

G. Install refrigerant piping and tubing in rigid or flexible conduit in locations where exposed to mechanical damage.

H. Unless otherwise required by VRF HVAC system manufacturer, slope refrigerant piping and tubing as follows:
 1. Install horizontal hot-gas discharge piping and tubing with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

I. When brazing, remove or protect components that could be damaged by heat.

J. Before installation, clean piping, tubing, and fittings to cleanliness level required by VRF HVAC system manufacturer.

K. Joint Construction:
 1. Ream ends of tubes and remove burrs.
 2. Remove scale, slag, dirt, and debris from inside and outside of tube and fittings before assembly.
 a. Use Type BCuP (copper-phosphorus) alloy for joining copper fittings with copper tubing.
 b. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze.

5.6 PIPE AND TUBING INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. Installation to maintain a continuous vapor barrier.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are unavailable, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

E. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

5.7 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping" Chapter.

5.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of manufacturer's service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Refrigerant Tubing Positive Pressure Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.

2. After completion of tubing installation, pressurize tubing systems to a test pressure of not less than 1.5 times VRF HVAC system operating pressure, but not less than 600 psig, using dry nitrogen.

3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of 24 hours. Allowance for pressure changes attributed to changes in ambient temperature are acceptable.

4. Prepare test report to record the following information for each test:
a. Name of person starting test, company name, phone number, and e-mail address.
b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
c. Detailed description of extent of tubing tested.
d. Date and time at start of test.
e. Test pressure at start of test.
f. Outdoor temperature at start of test.
g. Name of person ending test, company name, phone number, and e-mail address.
h. Date and time at end of test.
i. Test pressure at end of test.
j. Outdoor temperature at end of test.
k. Remarks:

5. Submit test reports for Project record.

C. Refrigerant Tubing Evacuation Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing positive-pressure testing, evacuate tubing systems to a pressure of 500 microns.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of one hour(s) with no change.
4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:

5. Submit test reports for Project record.
6. Upon successful completion of evacuation testing, system shall be charged with refrigerant.

D. System Refrigerant Charge:

1. Using information collected from the refrigerant tubing evacuation testing, system installer shall consult variable refrigerant system manufacturer to determine the correct system refrigerant charge.
2. Installer shall charge system following VRF HVAC system manufacturer's written instructions.
3. System refrigerant charging shall be witnessed by system manufacturer's representative.
4. Total refrigerant charge shall be recorded and permanently displayed at the system's outdoor unit.
E. Products will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

5.9 STARTUP SERVICE

A. Engage a VRF HVAC system manufacturer's service representative to perform system(s) startup service.
 1. Service representative shall be a factory-trained and -authorized service representative of VRF HVAC system manufacturer.
 2. Complete startup service of each separate system.
 3. Complete system startup service according to manufacturer's written instructions.

B. Startup checks shall include, but not be limited to, the following:
 1. Check control communications of equipment and each operating component in system(s).
 2. Check each indoor unit's response to demand for cooling and heating.
 3. Check each indoor unit's response to changes in airflow settings.
 4. Check each indoor unit and outdoor unit for proper condensate removal.
 5. Check sound levels of each indoor and outdoor unit.

C. Installer shall accompany manufacturer's service representative during startup service and provide manufacturer's service representative with requested documentation and technical support during startup service.
 1. Installer shall correct deficiencies found during startup service for reverification.

D. System Operation Report:
 1. After completion of startup service, manufacturer shall issue a report for each separate system.
 2. Report shall include complete documentation describing each startup check, the result, and any corrective action required.
 3. Manufacturer shall electronically record not less than two hours of continuous operation of each system and submit with report for historical reference.
 a. All available system operating parameters shall be included in the information submitted.

E. Witness:
 1. Invite Engineer and Owner to witness startup service procedures.
 2. Provide written notice not less than 10 business days before start of startup service.

5.10 ADJUSTING

A. Adjust equipment and components to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature and humidity set points. Adjust initial airflow settings and discharge airflow patterns.

C. Set field-adjustable switches and circuit-breaker trip ranges according to VRF HVAC system manufacturer's written instructions, and as indicated.

D. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

5.11 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

5.12 DEMONSTRATION

A. Engage a VRF HVAC system manufacturer's factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain entire system.

END OF SECTION 238129
SECTION 26 00 10 - ELECTRICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SCOPE OF WORK

A. Coordinate all work in this Division with all related trades.

B. Furnish all materials, equipment, devices, supplies, transportation and labor, and perform all work necessary in the installation of all electrical work, complete and in operating condition.

C. Examine all drawings and specifications and determine work to be performed by the Electrical Contractor and other trades. Provide the type and quantity of electrical materials, devices and equipment necessary to complete this work and place all systems in proper operation, tested and ready for use.

D. Work Included: In general, the electrical work shall consist of, but not be limited to, the following:

1. All electrical work identified on project’s electrical bid drawings and in project’s technical specifications.

2. Incidental items not indicated on the bid drawings, not mentioned in the bid technical specifications, which belong to the work described, or are required to provide a complete system, shall be provided as though called out here in every detail.

3. Contractor shall acquire all permits and Owner shall pay all fees as may be necessary to perform the specified work.

E. All line voltage electrical work related to the HVAC Trades shall be included under the Electrical Section of the Work. Coordinate all required line voltage work with the Mechanical Contractor.

F. All low voltage electrical work shall be performed by a licensed Electrician. Electrical Contractor shall be responsible for all low-voltage work required for this project with the exception of low-voltage automatic controls of HVAC systems, and shall be responsible to coordinate with all other Contractors the project’s low-voltage system requirements.

G. Work Related to other Electrically Operated Equipment.

1. Provide all electrical line voltage work required to provide electrical service and connection of electrically operated and/or controlled equipment, devices and systems furnished by other trades and specified in other trade sections of work. Examine all drawings and specifications and manufacturer’s wiring diagrams and recommendations of other trades, particularly, but not limited to, equipment provided in the general construction and mechanical contracts.

H. Work includes, but is not limited to, the following scope:
1. The Contractor’s work includes the demolition/renovation of the SJTP Creates Lab consisting of (5) primary class rooms and their associated lab equipment. Demolition shall include all associated conduit and wire, disconnects, and related appurtenances, etc., relocated equipment shall be fed by the same existing branch circuit extended to the new location and sized appropriately. The E.C. shall coordinated with both the mechanical contractor and the equipment being install for all interlocking communication and power wiring required for the proper operation of all hoods with their make-up air unit.

2. Contractor shall coordinate with the College and turn over to College any item shown to be demolished and removed which the College may want to keep.

3. Contractor shall be responsible to patch/seal and insulate all exterior wall and roof openings resulting from this project’s demolition and new construction work.

4. All patched and/or repaired wall, ceilings, floors roofs, etc., shall match building’s existing finishes.

I. Coordinate all work in this Division with all related trades.

1.3 WARRANTY

A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents. Submit a written warranty, executed by the manufacturer for the following:

1. Manufacturer’s warranty (full parts and labor) for not less than one (1) year from date of Substantial Completion as determined by Owner.

B. Standard warranty of manufacturer shall apply for replacement of parts after expiration of above period. Provide manufacturer’s replacement parts to the Owner, or his service agency as directed. Furnish to the Owner printed manufacturer’s warranties, upon completion of project.

C. Contractor shall be responsible to instruct the Owner’s personnel on operation and maintenance of each electrical system. Provide a minimum of one day for instruction of Owner’s personnel. Manufacturer shall provide a minimum of three (3) copies of their operation and maintenance instructions in booklet form. Manufacturer shall certify in writing, installation and performance of all electrical equipment, devices and systems is in compliance with design intent and manufacturers’ listed and submitted data.

1.4 ADDITIONAL REQUIREMENTS

A. The technical services to be delivered by the Contractor will include the following:

1. Coordination and cooperation of the Contractor to support the College’s schedule.

2. Testing and adjusting of all new and modified electrical systems shall be coordinated by the Contractor with the College and their vendors.

3. Field startup of all new mechanical equipment shall be performed by a manufacturer’s certified technician working directly for the Contractor. Electrical Contractor shall be available as necessary to assist startup work. Contractor shall notify College no less than two (2) weeks in advance of all equipment startups.

4. Testing and training of College employees by on-site technicians certified by the manufactures of the new equipment, fixtures, fire alarm and control systems.
5. Preparation and delivery of “as-built” drawings showing all new work performed as part of this project.

1.5 INTENT

A. It is the intent of the Specifications and Drawings to call for finished work, tested and ready for operation.

B. Any apparatus, appliance, material or work not shown on drawings but mentioned in the specifications, or vice versa, or any incidental accessories necessary to make the work complete in all respects and ready for operation shall be furnished, delivered and installed by the Contractor without additional expense to the Owner.

1.6 VISIT TO SITE

A. Prior to submission of bid, visit Site and become familiar with existing conditions. Bids as submitted, will be interpreted to include all costs and charges made necessary by existing conditions such as installation space requirements and interferences.

B. Contractor shall verify, in the field, the location and elevation of all underground services affected by this work before proceeding with construction. Notify Owner and Engineer immediately in the event the location of existing utilities vary appreciable from those shown on drawings.

1.7 LEGAL REQUIREMENTS AND STANDARDS

A. In addition to the Division 1 Specification Sections and Drawings, comply with the latest adopted rules of the following:

 1. National Fire Protection Association Codes as adopted by New Jersey.
 4. Local codes, laws, ordinances, rules and regulations of authorities having jurisdictions.
 5. OSHA.

B. The requirements of authorities shall be the minimum acceptable requirements for the work and nothing described in these specifications or indicated on the drawings shall be construed to permit work not conforming to the most stringent of the applicable codes and regulations.

C. When the drawings or specifications call for materials or construction of better quality or larger size than required by codes, laws, rules and regulations, the drawings and specifications shall take precedence.

D. Should any changes to work indicated on the drawings or described in the specifications be necessary so as to comply with the above requirements, immediately notify the Owner and Engineer.
1.8 PERMITS AND INSPECTIONS
A. Obtain and pay for all permits and inspections required by all legal authorities and agencies having jurisdiction for the work. This shall be a part of the work of the Contractor performing the work requiring the permit. The certificates of all such permits and inspections shall be delivered to the Engineer.

1.9 COORDINATION
A. Prior to bid, Contractor shall examine all available HVAC and Electrical Drawings for proper coordination of all trades and include in bid price all necessary work required for proper field coordination of all trades.

B. Prior to any construction work, Contractor shall reexamine all available HVAC and Electrical Drawings. The work of all other Sub-Contractors shall be carefully considered, and the work of this Contractor and each of his Sub-Contractors coordinated so that all parts of their work will be compatible with and not interfere with the other trades.

C. Review with the General Contractor and all other trades, locations of all equipment and materials so that all work may be installed in the most direct manner and interferences are avoided between pipes, ducts, conduits, equipment, fixtures, devices, associated appurtenances and architectural and structural features.

D. Contractors shall jointly prepare Coordination Drawings which include all HVAC and electrical installation layouts to be submitted to Engineer and all other Trades for mark-up, comment and coordination. Contractors shall submit, to the Engineer and all other trades, all setting plans, templates, approved shop drawings, approved equipment layouts, approved electrical and control wiring diagrams, etc., to insure proper space and functional relationship to all other equipment and services. Upon completion of coordination drawings, Contractor shall submit these coordination drawings to the Engineer for review and approval.

E. Prepare dimensioned conduit and equipment “Layout Drawings” in ¼” scale showing all inserts, sleeves in floors, walls, roofs, beams and columns as part of Contractor’s coordination drawings. Drawings shall provide for proper alignment.

F. Coordinate with all trades, clear passages and code required clearances necessary to deliver, relocate, remove, install and erect equipment and materials.

G. Where there will not be sufficient clearance for passage following erection of confining enclosures, deliver, set and protect equipment and materials before erection of confining enclosures. All equipment and materials so confined shall be inspected and tested prior to delivery. Should equipment or materials fail to meet the requirements of the Specifications, replace equipment or materials and pay all costs, including costs for modifications of completed areas that are required to provide clear passage.

H. When interferences occur, prepare installation drawings in ¼” scale of equipment and material in areas of interferences. Submit drawings to all other trades for their examination, comment, coordination and signed approval. Submit fully coordinated installation drawings to the Engineer for review before beginning any construction work. Meet as necessary with all other trades affected, coordinate work and correct interferences. Where interferences occur during construction because failure to coordinate work, rearrange work at no additional cost to the Owner.
I. All modifications to the building, removal and relocation of equipment and materials that are required for clear passage and code required clearance of equipment shall be provided in accordance with Subparagraph G above. Restoration of disturbed building structures and surfaces, and reinstallation and reconnection of equipment shall be provided in accordance with Subparagraph G above.

J. Coordinate the procurement of specified materials and equipment being supplied by Sub-Contractors, manufacturers and vendors. Such items as controls, thermometers, gages, motor starting equipment, vibration isolation devices, valves, etc., when provided as part of the equipment, shall meet the requirements of these specifications.

K. Upon completion and final coordination of Contractor's Coordination Drawings, Contractor shall submit final Coordination Drawings with all associated Layout Drawings to the Engineer for final approval. If the Contractor cannot resolve coordination conflicts with his/her Sub-Contractors, Contractor shall request a coordination meeting with Owner and Engineer.

1.10 PROTECTION

A. Effectively protect all material and equipment from dust, dirt, weather and damage until final acceptance as installed. Close all conduit, device, lighting and equipment openings, during construction, with suitable temporary closures. Provide suitable protective covering for equipment and material before, during and following installation. Provide new materials and equipment to replace similar damaged items without additional cost to the Owner.

1.11 DRAWINGS

A. Accompanying electrical drawings are a part of the Contract Documents and are intended to show approximate and relative locations of materials, devices and equipment. Drawings shall not be scaled to determine exact positions and clearances. Ascertain all dimensions in the field.

B. Because of diagrammatic layout and small scale of drawings, not all conduit and cable rises, drops, offsets and related specialties are indicated. Provide all such conduit, cables, fittings and specialties required in such cases to insure a complete and properly operating installation in accordance with Codes and without extra cost to Owner.

C. Examine all drawings and specifications pertaining to the work of all Other Trades. Be responsible for installation and fitting into the building, without interference to the work of Other Trades, all materials and equipment provided under this Contract.

D. When directed by the Owner or Engineer, the Contractor shall, without extra charge, make reasonable modifications in the layout as needed, to prevent conflict with the work of other trades or for proper execution of the work.

E. Where variances occur between the drawings and the specifications or within either document itself, the item or arrangement of better quality and greater quantity shall be included in the Contract price. The Owner and Engineer will decide on the item and the manner in which work shall be installed.
1.12 SUBMITTALS

A. The Contractor shall carefully prepare and review his schedule of submissions, determine the necessary lead time for preparing, submitting, checking, ordering and delivery of all materials and equipment for timely arrival. The Contractor shall be responsible for conformance with the overall construction schedule.

B. Submittals will be checked for general compliance with specifications only. The Contractor shall be responsible for deviations from the drawings or specifications, and for errors or omissions of any sort in submittals.

C. Submit a complete list of material and equipment proposed for the job, including manufacturer's names.

D. Reference all listings to the specifications' article to which each is applicable.

E. Submit on all materials and equipment, even if same is as specified or shown on the drawings.

F. Include complete catalog information such as construction, ratings, insulation systems, etc.

G. Submit shop drawings in accordance with Division 1 of the project's Technical Specifications.

H. Include with each submission and for each item the following information:

 1. Project name.
 2. Name of Contractor and/or Sub-Contractor making submission.
 3. Name of equipment, fixture, device, etc., being submitted. Identify by identification number shown on drawing.
 4. The manufacturer's name for each piece of equipment, fixture, device, etc.
 5. Complete performance data including voltage.

I. As a minimum, submit shop drawings for the following:

 2. Receptacles and associated enclosures.
 3. Line & Low Voltage Wiring and Conduit.
 4. Starters and Disconnect Switches.
 5. Panelboards.

J. Refer to Specification Section 01300 - Submittals for additional information.

1.13 AS-BUILT DRAWINGS

A. Prior to final payment, the Contractor shall submit "As-Built" drawings as herein described.

B. Maintain during construction a "clean" record set of installation prints. Record in colored ink on these prints all deviations from the contract drawings in sizing, location and details of underground utilities, conduit, lighting fixtures and equipment, etc. Submit as-built drawings to Engineer for review as part of the project close-out. Make correction following review and submit a complete set of "as-built" drawings, (1) set hard copy reproducible (1/8" =1'-0" scale minimum), and (1) set electronic files produced in PDF format to the Owner and Engineer upon project completion.
C. Refer to Specification Section 01300 - Submittals for additional information.

1.14 SAMPLES

A. The Owner or Engineer may direct the Contractor to submit samples of items called for in the specifications. Samples of materials which the manufacturer will actually ship shall be properly labeled or identified. Samples shall be left at the construction site for review by the Owner and Engineer.

B. Each sample must be labeled or securely tagged with the following minimum information:

1. Identification of sample (i.e.: material, color, number, etc.).
2. Reference to contract documents.
3. Name of manufacturer.
4. Name of project.
5. Name of Contractor
6. Date of submission

C. A transmittal letter shall be sent to the Engineer and Owner indicating when, where and how the samples were submitted.

1.15 WORK RESPONSIBILITIES

A. Examine the site and review all electrical, mechanical, architectural and structural and all other project drawings and accept such conditions and make allowance for them in preparing the bid. No extra charges will be considered for costs resulting from failure to comply with the above.

B. The drawings indicate diagrammatically the desired locations or arrangement of conduit runs, outlets, equipment, devices, panels, etc. and are to be followed as closely as possible. Proper judgment must be exercised in executing the work so as to secure the best possible installation in the available space and to overcome local difficulties due to space limitations or interference with structural conditions. The Contractor is responsible for the correct placing of his work and the proper location and connection of his work in relation to the work of other trades.

C. Locations shown on architectural and ceiling plans and/or wall elevations shall take precedence over electrical plan locations, but where a major conflict is evident, notify the Engineer for instructions prior to commencing work on the same.

D. In the event changes in the indicted locations or arrangements are necessary due to developed conditions in the building construction or rearrangement of furnishings or equipment, such changes shall be made without extra costs, providing the change is ordered before the conduit runs, etc., and the work directly connected to same is installed.

E. All scaled and figured dimensions are approximate of typical equipment of the type, class and capacity indicated. Before proceeding with any work, carefully check and verify all dimensions, sizes, etc. with the drawings to see that the equipment will fit into the spaces provided without violation of applicable codes.

F. Where equipment is furnished by others, verify voltage characteristics and dimensions and the correct locations of this equipment before proceeding with the roughing-in of connections.
G. Should any changes to the work indicated on the drawings or described in the specifications be necessary in order to comply with the above requirements, notify the Owner and Engineer immediately and cease work on all parts of the Contract which are affected until approval for any required modifications to the construction has been obtained from the Owner and Engineer.

H. Perform all work competent and skilled personnel.

I. All work shall be of the highest quality consistent with the best practices of the trade.

J. Replace or repair, without additional compensation, any work which, in the opinion of the Owner or Engineer, does not comply with these requirements.

K. The Contractor shall be responsible for the safety and good condition of all materials and equipment until final acceptance by the Owner; for providing adequate and proper storage facilities during the progress of the work; for replacing all damaged and defective work before applying for final acceptance; for erecting and maintaining suitable barriers, protective devices, light and warning signs for the protection of the public and employees; and for all loss, damage or injury to persons or property resulting from any neglect of these responsibilities.

L. The Contractor shall be responsible for all faults and deficiencies in his work during the guarantee period and shall repair, at no cost to the Owner, all such deficiencies that occur immediately upon notification by the Owner. All damage to other work there from, which may occur during the construction and guarantee period, shall be repaired at once, at no cost to the Owner.

1.16 INTERPRETATION

A. All requests for interpretation of plans and specifications must be made by the Contractor through the Engineer. Any such requests made by equipment manufacturer or suppliers will be referred to the Contractor.

1.17 INSPECTION AND ACCEPTANCE PROCEDURE

A. The Owner and Engineer will submit inspection reports periodically during the construction phase detailing contract deficiencies. The Contractor is responsible for making all corrections immediately to avoid delaying other trades. Final acceptances of the project will not be made until all items have been corrected and a final certificate of approval has been issued from the local authorities having jurisdiction.

1.18 WORK FORCE AND SUPERINTENDENCE

A. Contractor shall, upon initiation of construction, keep a suitable force of men on the site at all times in order to provide all sleeves, inserts and provide all other materials as required for the satisfactory installation of the entire system.

B. Contractor shall give his personal superintendence to the work or have a competent superintendent, satisfactory to the Engineer and the Owner, on the work at all times during construction with authority to act for him. He shall provide an adequate organization for proper coordination and expediting of this work.
1.19 RUBBISH

A. During the course of construction, all Contractors shall be responsible to remove from the premises all rubbish resulting from the work of the project. Contractors shall coordinate the continual cleanup of the project site with the Prime Contractor.

B. At all times, keep the premises free from accumulations of waste materials and rubbish caused by agents and employees of the Contractor.

C. At the completion of the work, remove from the site all rubbish in or about the building, in addition to tools, scaffolding and other specialties that were utilized or a result of Contractor’s work.

D. In the event of dispute of refusal to comply with the requirements of the above paragraphs, the Owner shall have the option of removing such rubbish from the premises, and back-charge the Contractor for doing such work.

E. The Contractor shall, on a daily basis, remove from the site all rubbish, debris and discarded materials resulting from Contractor’s work.

1.20 TEMPORARY SERVICES FOR CONSTRUCTION

A. Refer to General Conditions, Divisions 1 and 16 of the Technical Specification Sections and Conditions of the Contract.

B. Contractor shall at minimum provide a temporary electric service at the site until the new building’s electrical service has been installed and energized.

1.21 ACCESS PANELS

A. Furnish access panels required for access to junction boxes and any other electrical specialties requiring maintenance and service in ceilings, walls or floors.

B. Panels shall have 16 gauge steel frame and 14 gage flush steel door having concealed hinge and screwdriver operated cam locks, all with factory prime finish.

C. Panels shall be of sizes required for access to specialties, but in no case shall they be less than 18” x 18”.

D. Coordinate panel locations and sizes with Other Trades. Prior to installation, submit and review panel locations and sizes with Owner and Engineer.

E. Panels shall be furnished to suit the surface into which installed.

1.22 IDENTIFICATION

A. Identify all concealed and exposed equipment, conduit and wiring with legibly stenciled lettering, applied, after finish painting where applicable, in color to contrast with basic color.

B. All major electrical equipment, including switchboards, panels, disconnect switches, etc., shall be identified by the identification numbers shown on drawings, or by the Owner’s numbering.
system, if so directed. Lettering shall be minimum 1-inch high. Do not stencil surfaces exposed in public areas.

C. Label associated circuit number and panel number on covers of all electrical disconnect switches, receptacles and junction boxes.

D. Submit list of titles and data for Engineer’s review before beginning work.

1.23 OPERATING AND MAINTENANCE MANUALS

A. At the completion of the project, deliver to the Engineer for transmittal to the Owner, three (3) complete sets of instruction manuals, for each piece of electrical equipment, device, panels, switchboard, fixture, device, etc., and all specialty items.

B. Each instruction manual shall consist of data supplied by the manufacturer giving complete information on the following:

1. Installation procedure.
2. Operating instructions.
4. Detailed parts lists.
5. Recommended spare parts.
6. Address and telephone numbers of nearest supply house.
7. Address and telephone number of manufacturer’s representative.

C. Each set of instruction manuals shall be bound in an 8 ½” x 11” hard cover, 3-ring binder. The binders shall be assembled using tabs to separate each equipment item. An index sheet shall be inserted in the front of the binder, listing every item included with the manual.

1.24 OPERATING AND MAINTENANCE INSTRUCTION

A. After all tests, startups, adjustments and certifications have been successfully made, instruct the representatives of the Owner in all details of the operations of all electrical equipment, devices, systems and appurtenances. Provide competent instruction for a minimum of one (1) day, which shall not include time required for testing, adjusting, startup and certification.

B. Instruction in all details of operation of all equipment shall be recorded by means of videotaping.

1.25 ELECTRICAL EQUIPMENT

A. Contractor shall furnish all equipment complete with motor, controllers, capacitor, starting equipment and control transformers, except where specifically listed otherwise on the Contract Drawings.

B. Unless otherwise noted, electric motors shall be high efficiency, open, drip proof, induction type rated for continuous duty at 15% overload with 40 degrees C. rise. Single phase motors shall be capacitor start, induction run.

C. Manufacturer’s certified technician shall check the electrical equipment and systems for their conformance to the specifications, for proper installation and shall run the system in all modes.
of operation to ascertain that they will function properly. All necessary adjustment shall be made to insure trouble-free service.

D. After completion of startup procedure, Manufacturer shall certify, in writing, that the electrical equipment and systems is installed in accordance with his requirements and is operating in accordance with the intent of the specifications. Final payment will not be made until this requirement is completed.

PART 2 - PRODUCTS

2.1 SELECTION OF MATERIALS AND EQUIPMENT

A. Specified materials, equipment, devices, systems, etc., shall be selected within the operating capacities indicated on contract documents. In the absence of specific criteria, conservative commercial practice, in the opinion of the Engineer, will apply.

B. All materials and equipment shall comply with all applicable standards and requirements of:

1. National Electrical Manufacturers Association (NEMA).
3. Underwriters laboratories, Inc. (UL).
4. Institute of Electrical and Electronics Engineers (IEEE).

C. Items of a similar application shall be of the same manufacturer.

D. The label of listing by Underwriters Laboratories, Inc. shall appear on all materials and equipment for which standards have been established by that agency.

E. Where local or other authorities have jurisdiction, have established label or approval requirements, furnish all materials and equipment with either the required labels affixed, or the necessary written approval.

F. The equipment plans are designed around standard products of one or more of the manufacturer’s listed as being acceptable for the product involved. Where one or more manufacturer is listed as being acceptable for a product, each manufacturer listed for that product shall be considered as “equal” and acceptable.

G. All materials to be free of asbestos and urea formaldehyde.

PART 3 - EXECUTION

3.1 SLEEVES AND ELECTRICAL PENETRATIONS

A. Locate all openings required for the installation of the electrical work during framing of the structure. Do any additional cutting and patching required due to improperly located or omitted openings without cost to the Owner, and with the approval of the Engineer or Owner.

B. Cutting or drilling in any structural member is prohibited without written approval of the Owner and Engineer.
C. Location of Sleeves: Wherever conduits pass through concrete walls or suspended slabs, furnish and install sleeves of ample size to permit installation of conduit. Sleeves shall be installed prior to pouring of concrete and shall have ends flush with the wall or extend two (2") inches above floor surfaces. Verify location with the Engineer.

D. Where sleeves pierce unrated slabs or walls separating machine room areas from or other quiet areas, the sleeves shall be packed with fiberglass insulation to prevent noise transfer.

E. Where raceways for electrical power, telephone or signal cables penetrate FIRE RATED walls, floors, partitions or slabs, fill and seal all such penetrations with a one-part intumescent caulk/putty sealant creating a fire stop equal to or exceeding fire rating of partition being penetrated. Fire sealant shall have ability to prevent spread of flame, smoke and water throughout the penetration and shall pass three (3) hour test, UL Test ASTM E814 and UL 1479. Fire sealant shall be 3M CP25 caulk and putty 303, installed in accordance with manufacturer's written instructions. Avoid all voids when arranging cables in penetration by using non-flammable fiber damming material wedged between cables.

F. Type of sleeves: Steel pipe or galvanized sheet metal is acceptable.

G. Finish Around Sleeves: Rough edges shall be finished smooth. Space between conduit and sleeves, where conduit passes through exterior walls and walls shall be sealed to permit movement of conduit, but prevent entrance of water.

H. Space between conduit and sleeves, where conduit passes through interior walls and slabs, shall be sealed with an approved sealing compound that is fireproof and will remain pliable.

I. Where faulty installation of sleeves, etc. occurs, the Electrical Contractor shall make all necessary changes and repairs, at no cost to the Owner, to the satisfaction of the Owner and Engineer.

J. Where openings requested by the Electrical Contractor are left in floors or walls under other contracts, and are not used, such openings shall be filled in to match the adjoining work the Electrical Contractor.

K. All additional openings required and not requested while the work proceeds shall be cut as a part of the work of the appropriate trade and be paid for by the Electrical Contractor.

3.2 FLASHING AND ROOF REPAIRS

A. All flashing methods and materials shall attain a complete watertight installation.

B. For all conduits passing through a roof, provide counter-flashing fitting up to 6 inch size. For conduit smaller than 1 ½" size, provide pitch pockets on roof.

C. Riser sleeves for conduits in membrane waterproofed floors shall have flashing clamps attached to membrane. Where possible, sleeves shall be provided with top and bottom steel pipe sleeves. Large sleeves shall be shop fabricated. Sleeves shall extend 2 inches above finished door.
3.3 CUTTING AND PATCHING

A. The Electrical Contractor shall at a time in advance of the work, verify all openings indicated on the drawings. Should the work of this Division require it, Contractor shall furnish new instructions as to his requirements for these openings, subject to the Owner’s and Engineer’s approval. All additional cutting, patching and reinforcement of the construction of the building (subject to the Owner’s and Engineer’s approval) shall be performed under the section of the specifications covering the particular materials, but the cost shall be an obligation of this section of the work.

B. The Contractor shall provide and pay for the addition of all structural steel required for the support or bracing of all work furnished and installed.

C. Sub-Contractors shall furnish Prime Contractor information such as size, position and arrangement of materials and equipment, so that new openings in floors, walls, roofs, beams, ceilings can be properly provided and coordinated as construction progresses.

D. Cutting and patching for new equipment and materials in new construction will be provided by Contractor.

E. Cutting shall be coordinated with Other Trades, done neatly and to minimize damage to all construction. Provide lintels where required.

F. Cutting and patching shall be done by Trades normally specializing in installation of materials being patched. Paint all patched surfaces to match new finishes.

G. Review all cutting and patching with Owner and Engineer before beginning work.

H. Cutting openings in new concrete slabs and walls shall be done neatly using core boring machines.

3.4 CLEANING AND PAINTING

A. Conduit and Equipment to be Installed: Clean conduit and equipment thoroughly to remove plaster, splattered paint, cement and dirt, on both exterior and interior.

B. Conduit and Equipment to be Painted: Clean all conduit and equipment exposed to view in completed structure by removing plaster and dirt. Remove grease, oil and similar material from conduit and equipment by wiping with clean rags and suitable solvents in preparation for paint.

C. All Items with Factory Finish: Remove cement, plaster, grease and oil, and leave all surfaces, including cracks and corners, clean and polished. Touch up any scratched or bare spots to match finish.

D. All electrical apparatus and equipment in equipment rooms shall be provided with a factory finish cost. All panels in public spaces, corridors, etc., shall be provided with a factory prime coat.

E. Site Cleaning: Remove from site all packing cartons, scrap materials, and other rubbish relating to electrical installation.
3.5 TESTS

A. Prior to energizing any motors, measure the service voltage for phase balance, and report immediately to the Engineer if unbalance exceeds one (1%) percent from mean.

B. Upon completion of the work and adjustment of all equipment, conduct an operating test for approval at such time as the Owner or Engineer directs. Conduct the test in the presence of an authorized representative of the Owner or Engineer. Demonstrate all systems and equipment to operate, in accordance with all requirements of the contract documents, and to be free from all electrical and mechanical defects.

C. All systems shall be free from short circuits and grounds, and shall show insulation between phase conductors and ground not less than the requirements of the National Electrical Code. Test all circuits for proper neutral connections.

D. Complete all tests prior to final inspection of the project.

3.6 PRELIMINARY OPERATIONS:

A. Should the Owner require that any portion of the systems or equipment be operated prior to the final schedule dates for completion and acceptance of the work, the Contractor shall consent. Such operation shall be under the direct supervision of, and at the expense of the Contractor, and shall not be construed as an acceptance of any of the work by the Owner.

END OF SECTION 260010
SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper building wire rated 600 V or less.
2. Metal-clad cable, Type MC, rated 600 V or less.
3. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

A. PV: Photovoltaic.
B. RoHS: Restriction of Hazardous Substances.
C. VFC: Variable-frequency controller.

1.4 SUBMITTALS

A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.
C. Qualification Data: For manufacturer's authorized service representative.
D. Field quality-control reports.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

D. Conductor Insulation:
 1. Type Type THHN and Type THWN-2: Comply with UL 83.
 2. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.

2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. Comply with UL 1569.
 3. RoHS compliant.
 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Circuits:

D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

E. Ground Conductor: Insulated.

F. Conductor Insulation:
 1. Type TFN/THHN/THWN-2: Comply with UL 83.

G. Armor: PVC coated steel for exterior use and galvanized steel for indoor use, interlocked.

H. Jacket: PVC applied over armor for exterior use.

2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

C. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
1. Material: Copper.
2. Type: Two hole with standard barrels.
3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG; copper for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in schedule 80 PVC raceway.

E. Exposed Branch Circuits, Including in Attic spaces: Type THHN/THWN-2, single conductors in EMT raceway or Metal-clad cable, Type MC.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in schedule 80 PVC raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.
1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors for compliance with requirements.

2. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements:
 a. Chiller.
 b. Hydronic pumps.
 c. Electric heater for chiller, heat trace and receptacles.

3. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one (1) minute duration.
 g. Continuity test on each conductor and cable.
 h. Uniform resistance of parallel conductors.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS
A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Conduit Hubs: Mechanical type, terminal with threaded hub.

H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt or socket set screw.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Straps: Solid copper, cast-bronze clamp or copper lugs. Rated for 600 A.

K. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

L. Water Pipe Clamps:
 1. Mechanical type, two pieces with stainless-steel bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad, sectional type, 5/8 by 96 inches.

B. Ground Plates: 1/4 inch thick, hot-dip galvanized.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for
No. 6 AWG and larger unless otherwise indicated.

B. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise
indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those
required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Metal-clad cable runs.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise
indicated or required by Code. Avoid obstructing access or placing conductors where they may
be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance
except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate
any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install
bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection
is required, use a bolted clamp.

C. Connections: Make connections so possibility of galvanic action or electrolysis is minimized.
Select connectors, connection hardware, conductors, and connection methods so metals in
direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make
contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test building's existing grounding system at service disconnect enclosure grounding terminal and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Panelboards: 3 ohms.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Engineer promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Galvanized steel slotted support systems.
 2. Conduit and cable support devices.
 3. Support for conductors in vertical conduit.
 4. Structural steel for fabricated supports and restraints.
 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 6. Fabricated metal equipment support assemblies.

1.3 SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.
 2. Include rated capacities and furnished specialties and accessories.

B. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M or AWS D1.2/D1.2M.

B. Welding Qualifications: Qualify procedures and personnel according to the following:
1. AWS D1.1/D1.1M.
2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 “Quality Requirements,” to design hanger and support system.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.
2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches on center in at least one surface.

1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
3. Channel Width: Selected for applicable load criteria.
4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Conduit and Cable Support Devices: Galvanized steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES
A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION
A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 1. NECA 1.
B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION
A. Comply with NECA 1 for installation requirements except as specified in this article.
B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC and RMC may be supported by openings through structure members, according to NFPA 70.
C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts or beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 6 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 5000-psi, 28-day compressive-strength concrete.

C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

END OF SECTION 260529
SECTION 26 05 33 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Metal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

B. IMC: Intermediate metal conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

D. Qualification Data: For professional engineer.

E. Source quality-control reports.
2. METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. GRC: Comply with ANSI C80.1 and UL 6.
3. IMC: Comply with ANSI C80.6 and UL 1242.
4. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch, minimum.
5. EMT: Comply with ANSI C80.3 and UL 797.
6. FMC: Comply with UL 1; zinc-coated steel.
7. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

1. Comply with NEMA FB 1 and UL 514B.
2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Fittings, General: Listed and labeled for type of conduit, location, and use.
5. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Compression.
6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
7. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. RNC: Type EPC-80-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
3. LFNC: Comply with UL 1660.

B. Nonmetallic Fittings:
1. **Fittings, General:** Listed and labeled for type of conduit, location, and use.

2. **Fittings for ENT and RNC:** Comply with NEMA TC 3; match to conduit or tubing type and material.

 a. **Fittings for LFNC:** Comply with UL 514B.

3. **Solvents and Adhesives:** As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. **Description:** Sheet metal, complying with UL 870 and NEMA 250, Type 3R unless otherwise indicated, and sized according to NFPA 70.

 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. **Fittings and Accessories:** Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. **Wireway Covers:** Flanged-and-gasketed type unless otherwise indicated.

D. **Finish:** Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS

A. **Listing and Labeling:** Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. **Description:** Schedule 80 PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

C. **Fittings and Accessories:** Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

D. **Solvents and Adhesives:** As recommended by conduit manufacturer.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. **General Requirements for Boxes, Enclosures, and Cabinets:** Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. **Sheet Metal Outlet and Device Boxes:** Comply with NEMA OS 1 and UL 514A.

C. **Cast-Metal Outlet and Device Boxes:** Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

D. **Nonmetallic Outlet and Device Boxes:** Comply with NEMA OS 2 and UL 514C.

E. **Metal Floor Boxes:**
1. Material: Cast metal.
2. Type: Fully adjustable.
3. Shape: Rectangular.
4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast iron with gasketed cover.

H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

J. Gangable boxes are prohibited.

K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 3R with continuous-hinge cover with flush latch unless otherwise indicated.

 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

L. Cabinets:

 1. NEMA 250, Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:

 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.

 1. Standard: Comply with SCTE 77.
 2. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC."
6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: RNC, Type EPC-80-PVC.
2. Concealed Conduit, Aboveground: RNC, Type EPC-80-PVC.
3. Underground Conduit: Type EPC-80-PVC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Mechanical and Electrical rooms.
 b. Shops.
 c. Vehicle storage areas.
3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: GRC.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer, and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.
H. Do not install nonmetallic conduit where ambient temperature exceeds 120°F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2-inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Engineer for each specific location.
 5. Change from ENT to Type EPC-80-PVC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

W. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Locate boxes so that cover or plate will not span different building finishes.

Z. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

AA. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.

2. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction.

3. Install manufactured Schedule 80 PVC conduit elbows for stub-ups at poles and equipment and at building entrances through floor.

a. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend Schedule 80 PVC conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

4. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.

5. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 26 05 44 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

1.3 SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.
B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade, Non-Fire-Rated, Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 “Joint Sealants.”
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
3. Size pipe sleeves to provide \(\frac{1}{4} \)-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 4. Tapes and stencils.
 5. Tags.
 7. Cable ties.
 9. Fasteners for labels and signs.

1.3 SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Color-Coding for Phase-and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 1. Color shall be factory applied.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 240-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 4. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 7. Colors for Isolated Grounds: Green with white stripe.

C. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:
1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:

1. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 42 INCHES."

F. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-around Labels: Slit, pre-tensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.

1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
2. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.

2.4 BANDS AND TUBES

A. Snap-around, Color-Coding Bands: Slit, pre-tensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and is 12 inches wide. Stop stripes at legends.

D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

E. Underground-Line Warning Tape:
 1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 TAGS

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.023 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

C. Write-on Tags:
 1. Polyester Tags: 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment.
 2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS

A. Baked-Enamel Signs:
 1. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with black letters on white face, Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F
5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."

M. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

W. Underground Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
2. Limit use of underground-line warning tape to direct-buried cables.
3. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Metal Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized cable ties.

Y. Nonmetallic Preprinted Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized cable ties.

Z. Write-on Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized cable ties.

AA. Baked-Enamel Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.

BB. Cable Ties: General purpose, for attaching tags, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30A and 120V to Ground: Identify with self-adhesive raceway labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

K. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

L. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

M. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
N. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

O. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

P. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

Q. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

S. Operating Instruction Signs: Baked-enamel warning signs.

T. Emergency Operating Instruction Signs: Baked-enamel warning signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment.

U. Equipment Identification Labels:

1. Indoor Equipment: Baked-enamel signs.
2. Outdoor Equipment: Laminated acrylic or melamine sign 4 inches high.
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Emergency system boxes and enclosures.
 e. Enclosed switches.
 f. Enclosed circuit breakers.
 g. Enclosed controllers.
 h. Variable-speed controllers.
 i. Push-button stations.
 j. Contactors.
 k. Remote-controlled switches, dimmer modules, and control devices.
 l. Monitoring and control equipment.
SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.
3. Load centers.
4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 SUBMITTALS

A. Product Data: For each type of panelboard.

1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
8. Include wiring diagrams for power, signal, and control wiring.
9. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

C. Qualification Data: For testing agency.

D. Panelboard Schedules: For installation in panelboards.

E. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition, include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

F. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: One (1) spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Minimum of eight (8) spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards.

B. Handle and prepare panelboards for installation according to NEMA PB 1.
1.7 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minimum 22 deg. F to plus 105 deg. F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Owner no fewer than two (2) weeks in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Owner's written permission.
3. Comply with NFPA 70E.

1.8 WARRANTY

A. Manufacturer’s Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard and Circuit Breaker Warranty Period: Three (3) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Surface-mounted, dead-front cabinets.
1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5 or Type 12.

2. Height: 84 inches maximum.
3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
7. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

F. Incoming Mains:
1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

G. Phase, Neutral, and Ground Buses:
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

H. Conductor Connectors: Suitable for use with conductor material and sizes.
2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
6. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
7. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

I. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

 1. Percentage of Future Space Capacity: Twenty (20) percent, unless otherwise indicated on drawings.

K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

 1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 22,000 A rms symmetrical.
 2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 25,000 A rms symmetrical.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 22,000 A rms symmetrical.
 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 25,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 PANELBOARDS

A. Panelboards: NEMA PB 1, distribution type.
B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

C. Mains: Circuit breaker, unless noted otherwise on Drawings.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

F. Branch Overcurrent Protective Devices: Fused switches.

G. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit, or as noted on Drawings.

2.4 LOAD CENTERS

A. Load Centers: Comply with UL 67.

B. Mains: Circuit breaker, unless noted otherwise on Drawings.

C. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

D. Doors: Concealed hinges secured with flush latch with tumbler lock; keyed alike.

E. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Coordinate "MCCB" and "Fused Switch" paragraphs below with Drawings. See the "Circuit Breakers" Article in the Evaluations for guidance on making selections.

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
c. Digital display of settings, trip targets, and indicated metering displays.
d. Multi-button keypad to access programmable functions and monitored data.
e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
f. Integral test jack for connection to portable test set or laptop computer.
g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 h. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 i. Multipole units enclosed in a single housing with a single handle.
 j. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off positions.
 k. Handle Clamp: Loose attachment for holding circuit-breaker handle in on position.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."
 2. Fused Switch Features and Accessories:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.
2.6 IDENTIFICATION
A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES
A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment,
raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NEMA PB 1.1.

D. Equipment Mounting:
 1. Install panelboards on cast-in-place concrete equipment base(s).
 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Mount top of trim 90 inches above finished floor unless otherwise indicated.

G. Mount panelboard cabinet plumb and rigid without distortion of box.

H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

I. Mount surface-mounted panelboards to steel slotted supports 1-1/4 inch in depth. Orient steel slotted supports vertically.

J. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

L. Install filler plates in unused spaces.

M. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four (4) 1-inch empty conduits into raised floor space or below slab not on grade.

N. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

O. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. GFCI receptacles.
 2. Toggle switches.
 3. Wall plates.

1.3 DEFINITIONS

A. BAS: Building automation system.
B. EMI: Electromagnetic interference.
C. GFCI: Ground-fault circuit interrupter.
D. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
E. RFI: Radio-frequency interference.
F. SPD: Surge protective device.
G. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.
PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with the requirements in this Section.

D. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GFCI RECEPTACLES

A. General Description:
 1. 125 V, 20 A, straight blade, non-feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
 4. Provide weatherproof, in-use cover.

B. Duplex GFCI Convenience Receptacles:

2.3 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:

2.4 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: Type 302 stainless steel 0.04-inch-thick, brushed brass with factory polymer finish.
4. Material for Damp Outdoor Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for in-use, in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, in-use, die-cast aluminum with lockable cover.

2.5 FINISHES

A. Device Color: By Owner.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.

2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.

3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.

2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

4. Existing Conductors:

 a. Cut back and pigtail, or replace all damaged conductors.

 b. Straighten conductors that remain and remove corrosion and foreign matter.

 c. Pig-tailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES
A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
A. Comply with Section 260553 "Identification for Electrical Systems."
B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL
A. Test Instruments: Use instruments that comply with UL 1436.
B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
C. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

D. Wiring device will be considered defective if it does not pass tests and inspections.

END OF SECTION 262726
SECTION 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.
C. Field quality-control reports.

D. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.5 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three (3) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

A. Type HD, Heavy Duty:
1. Single throw.
2. Three pole.
3. 600-V ac.
4. 200 A and smaller.
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 NONFUSIBLE SWITCHES

A. Type HD, Heavy Duty, Three Pole, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 MOLDED-CASE CIRCUIT BREAKERS

A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

C. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated. Circuit breaker/circuit breaker and Fuse/circuit breaker combinations for series connected interrupting ratings shall be listed by UL as recognized component combinations. Any series rated combination used shall be marked on the end-use equipment along with the statement "Caution - Series Rated System. 22,000 Amps Available. Identical Replacement Component Required."
D. Lugs shall be suitable for 90 deg C rated wire, sized according to the 75 deg C temperature rating in NFPA 70.

E. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

H. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

I. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

J. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

K. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

L. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
D. Operating Mechanism: The circuit-breaker operating handle shall be directly operable through the dead front trim of the enclosure (NEMA 250 Type 3R). The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

 1. Notify Engineer and Owner no fewer than fourteen (14) days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner’s written permission.
 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.

i. Verify correct phase barrier installation.

j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

C. Tests and Inspections for Molded Case Circuit Breakers:

1. Visual and Mechanical Inspection:

a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.

b. Inspect physical and mechanical condition.

c. Inspect anchorage, alignment, grounding, and clearances.

d. Verify that the unit is clean.

e. Operate the circuit breaker to ensure smooth operation.

f. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

g. Inspect operating mechanism, contacts, and chutes in unsealed units.
h. Perform adjustments for final protective device settings in accordance with the coordination study.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
e. Determine the following by primary current injection:

1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.
g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.
h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.
i. Verify operation of charging mechanism. Investigate units that do not function as designed.
3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Perform the following infrared scan tests and inspections and prepare reports:

a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.

c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges to values indicated on the Drawings.

END OF SECTION 262816