#1 - Question & Answer
Can you provide a plan set of the existing Linden Hall? We are looking especially for the locations and depths of the Basements.

Available Linden Hall floor plans have been provided with these question responses.

#2 - Question & Answer
Where will the lights be fed from?

Site lighting electrical plans (Sheets ES1-ES3) are provided with these question responses.

#3 - Question & Answer
What voltage is available from the undetermined power source?

Site lighting electrical plans (Sheets ES1-ES3) are provided with these question responses.

#4 - Question & Answer
Where will we be terminating the electric to when we demo Linden Hall?

See Sheet CD-102 for electrical removal extents to the north and west of Linden.

#5 - Question & Answer
This spec seems like 3 specs in 1. Should I only be looking at the photo requirements for 1 of the sections?

The contractor shall be responsible for providing photos of existing conditions prior to demolition work in accordance with Specification 02 41 00, Section 1.11. In addition, the contractor shall provide progress photos in accordance with Rowan University requirements as detailed in General Conditions 5.4.1 and Section 01 24 00. Please assume 10 progress photographs are required with each payment application. Photographs shall include building demolition, utility removal, etc.
#6 - Question & Answer
Section 02 41 00 - 5 Paragraph 1.11 A - What size photos? How many sets of photos will be needed?

The contractor shall be responsible for providing photos of existing conditions prior to demolition work in accordance with Specification 02 41 00, Section 1.11. In addition, the contractor shall provide progress photos in accordance with Rowan University requirements as detailed in General Conditions 5.4.1 and Section 01 24 00. Please assume 10 progress photographs are required with each payment application. Photographs shall include building demolition, utility removal, etc.

#7 - Question & Answer
Section II - 27 - Paragraph 5.4.1 - How many areas will need to be photographed each month?

The contractor shall be responsible for providing photos of existing conditions prior to demolition work in accordance with Specification 02 41 00, Section 1.11. In addition, the contractor shall provide progress photos in accordance with Rowan University requirements as detailed in General Conditions 5.4.1 and Section 01 24 00. Please assume 10 progress photographs are required with each payment application. Photographs shall include building demolition, utility removal, etc.

#8 - Question & Answer
Section 012400 - This section also asks for Progress Photography, but with different submittal requirements. Is this for a construction phase after the demolition of the building?

The contractor shall be responsible for providing photos of existing conditions prior to demolition work in accordance with Specification 02 41 00, Section 1.11. In addition, the contractor shall provide progress photos in accordance with Rowan University requirements as detailed in General Conditions 5.4.1 and Section 01 24 00. Please assume 10 progress photographs are required with each payment application. Photographs shall include building demolition, utility removal, etc.

#9 - Question & Answer
The specifications calls for 8’ high panels with screening. This will have a heavy wind load on it. Are vent holes allowed in the screening?

Yes. Vent holes are permitted.

#10 - Question & Answer
Article 13.1.5 may require the Contractor to maintain an Owners and Contractors Protective policy (OCP). May you please confirm whether or not this requirement applies?

Bidders must provide all insurances and certificates as required in the documents.
<table>
<thead>
<tr>
<th>#11 - Question & Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 6, Section 6.1 Field Offices. 6.1.1 states, “The contractor will provide on-site……field offices.” Will an onsite Field Office be required?</td>
</tr>
<tr>
<td>An office isn’t required. It is at the discretion of the Contractor to provide at their own expense.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#12 - Question & Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 10, Section 10.1.4 states that “University shall pay the total premiums……to obtain bonds to the contractor.” Should the Bond Costs be included in the Base Bid Cost or will they be paid for above and beyond the prices bid?</td>
</tr>
<tr>
<td>The Contractor is responsible to purchase any bonds as required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#13 - Question & Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 014000, 1.2, G states, “The contractor will hire and pay for a qualified testing agency.” Section 312316, 1.4, C states “A testing agency hired by the University will perform construction observation and testing of backfilling operations.” What testing will the University be responsible for and what testing will the contractor be responsible for?</td>
</tr>
<tr>
<td>Rowan University will hire the testing agency for backfilling operations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#14 - Question & Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 024100. 3.9, B, 1 states, “The Contractor shall coordinate and pay for all necessary sampling and analyses of the soils and concrete to be disposed of off-site…… to characterize them as non-hazardous or hazardous.” We were told at the Pre-Bid meeting that all hazardous materials have been removed from Linden Hall. Will the Contractor be responsible for this testing, and as stated in Section 024100. 3.9, D, will the Contractor be responsible for the cost disposing of hazardous materials?</td>
</tr>
<tr>
<td>Langan has completed a screening level survey of the concrete using methods and analytical procedures recommended by applicable NJDEP guidance. Based on the analytical results, and for the tested locations, no contamination of the concrete has been identified that would necessitate disposal as a solid waste. These results can be used to support recycling or reuse subject to NJDEP’s Solid Waste regulations. The testing of additional samples may be required for recycling facility acceptance or to obtain NJDEP approval for reuse, which would need to be completed by the contractor if necessary. A copy of the previous testing results and memorandum are included with these response.</td>
</tr>
</tbody>
</table>
#15 - Question & Answer

It was mentioned in the Pre-Bid meeting that the Irrigation Control System will be removed and relocated in a nearby building. Plan Sheet CD-102 notes that the Irrigation and Control System is to be removed. Are there any plans or specifications for moving the Irrigation System? Is the Contractor responsible for salvaging, moving and installing the Irrigation Control systems? Is any new Irrigation to be installed?

The irrigation controls are to be relocated to Memorial Hall. New irrigation is not proposed around the parking lot, however the existing system needs to remain active and connected so that irrigation is not cut off for the neighboring areas.

#16 - Question & Answer

Are the existing Steam Lines to Linden Hall shut off? According to the Plan Sheet CD-102 the Contractor is to remove the lines into the building and install Valves & Caps outside the existing building. Will we be able to isolate these steam lines so we will not have work on pressurized or live lines?

Yes.

If you submitted questions to bids@rowan.edu by the due date indicated in the bid document, but they were not received and answered here, please contact:

Robert Yufer
Office of Contracting & Procurement
Yufer@rowan.edu
856.256.4196
Langan Engineering and Environmental Services, Inc. (Langan) completed in-situ concrete characterization sampling at Rowan University’s Linden Hall and has prepared this Technical Memorandum to describe the results. The sampling plan was based upon the New Jersey Department of Environmental Protection’s (NJDEP’s) January 12, 2010 Guidance for Characterization of Concrete and Clean Material Certification for Recycling (Concrete Guidance). Our screening level evaluation is intended to provide an initial understanding of the likelihood that masonry demolition debris will require special management in accordance with NJDEP regulations. Accordingly, while the methods employed are consistent with the Concrete Guidance, additional samples may be required for reuse or recycling facility approvals.

We understand that the entire Linden Hall building, including the brick façade, concrete block walls, interior concrete building slab, and exterior concrete paved areas immediately adjacent to the building will be demolished during future renovation activities. Accordingly, these are the areas where the characterization samples were taken. Additionally, all of the data has been evaluated in consideration of NJDEP’s Fill Material Guidance for SRP Sites (April, 2015).

In-situ Characterization Sampling

Pursuant to NJDEP’s Concrete Guidance, concrete testing is required to assess if the material can be recycled or beneficially reused, rather than disposed as a solid waste in accordance with New Jersey Solid Waste rules. The Concrete Guidance also recommends that samples be collected before demolition, in-situ, and that sampling locations be biased toward areas of visible contamination (i.e., staining and odors); however, during the walkthrough of Linden Hall and the surrounding sidewalks, no visible contamination was observed.

Concrete was collected as discrete chip samples in accordance with the NJDEP’s Field Sampling Procedures Manual. Samples were collected using a portable hammer drill with a chisel bit and a hammer. The sampling equipment was decontaminated between collection of individual samples. The chipped pieces of concrete were handled using a dedicated pair of
disposable gloves while being transferred to glass jars. Three samples were collected from each type of masonry encountered, which include: (1) the brick façade, (2) concrete block walls, (3) interior concrete building slab, and (4) exterior concrete paved areas. The attached Concrete Sampling Map (Figure 1) documents the name and location of each sample. As depicted in Figure 1, sample locations were purposefully spread out with the intention of providing an evaluation of the entire area to be demolished.

Due to the nature of the sampling and the intended purpose, no trip blanks, field blanks or duplicate samples were collected for this study. Samples were analyzed at Aqua Pro-Tech Laboratories, a New Jersey certified lab (Certification No. 07010) within method-specific holding times. Sample tracking and handling was performed in accordance with NJDEP’s Field Sampling Procedures Manual. Consistent with the Concrete Guidance, the samples were analyzed for polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB).

Results

Laboratory results are presented in Table 1 and have been compared to NJDEP’s Residential Direct Contact Soil Remediation Standards (RDCSRS), NJDEP’s Non-Residential Direct Contact Soil Remediation Standards (NRDCSRS) and default Impact to Groundwater Soil Screening Levels (IGWSSL). All sample results were found to be below the most stringent NJDEP Remediation Standards for all PAHs and PCBs. In fact, only three detections were identified: phenanthrene and naphthalene in sample “Interior Slab-3”, and phenanthrene in sample “Interior Wall-3”. No other targeted analytes were detected in any of the samples.

Conclusions and Recommendations

Langan has completed this screening level survey using methods and analytical procedures recommended by applicable NJDEP guidance. Based on the analytical results, and for the tested locations, no contamination of the concrete has been identified that would necessitate disposal as a solid waste. These results can be used to support recycling or reuse subject to NJDEP’s Solid Waste regulations. As mentioned previously, the testing of additional samples may be required for recycling facility acceptance or to obtain NJDEP approval for reuse.
TABLE
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LAB SAMPLE ID:</th>
<th>NJDEP SRS</th>
<th>NJDEP RDCSRS</th>
<th>DJDEP NRDCSRS</th>
<th>NJDEP IGWSSL</th>
<th>Brick-1</th>
<th>6/5/2017</th>
<th>Result</th>
<th>Q</th>
<th>MDL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick-1</td>
<td>7060189-02</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00108 0.033</td>
<td>ND</td>
<td>0.00108 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Brick-2</td>
<td>7060189-04</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00711 0.033</td>
<td>ND</td>
<td>0.00711 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Brick-3</td>
<td>7060189-06</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00186 0.033</td>
<td>ND</td>
<td>0.00186 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Concrete Walk-1</td>
<td>7060189-01</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00255 0.033</td>
<td>ND</td>
<td>0.00255 0.033</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
<td>U</td>
<td>0.0018 0.033</td>
<td>ND</td>
<td>0.0018 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Acroclor-1208</td>
<td>1500</td>
<td>300000</td>
<td>30000</td>
<td>2</td>
<td>2</td>
<td>ND</td>
<td>U</td>
<td>0.0236 0.033</td>
<td>ND</td>
<td>0.0186 0.033</td>
<td>ND</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LAB SAMPLE ID:</th>
<th>NJDEP SRS</th>
<th>NJDEP RDCSRS</th>
<th>DJDEP NRDCSRS</th>
<th>NJDEP IGWSSL</th>
<th>Brick-1</th>
<th>6/5/2017</th>
<th>Result</th>
<th>Q</th>
<th>MDL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick-1</td>
<td>7060189-02</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00108 0.033</td>
<td>ND</td>
<td>0.00108 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Brick-2</td>
<td>7060189-04</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00711 0.033</td>
<td>ND</td>
<td>0.00711 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Brick-3</td>
<td>7060189-06</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00186 0.033</td>
<td>ND</td>
<td>0.00186 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Concrete Walk-1</td>
<td>7060189-01</td>
<td>NA</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>U</td>
<td>0.00255 0.033</td>
<td>ND</td>
<td>0.00255 0.033</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
<td>U</td>
<td>0.0018 0.033</td>
<td>ND</td>
<td>0.0018 0.033</td>
<td>ND</td>
</tr>
<tr>
<td>Acroclor-1208</td>
<td>1500</td>
<td>300000</td>
<td>30000</td>
<td>2</td>
<td>2</td>
<td>ND</td>
<td>U</td>
<td>0.0236 0.033</td>
<td>ND</td>
<td>0.0186 0.033</td>
<td>ND</td>
</tr>
</tbody>
</table>

Qualifiers:

- D - Indicates result is based on a dilution
- IGWSSL - Impact to Groundwater Soil Screenin Level
- MDL - Method Detection Limit
- ND - Non Detect
- NJDEP - New Jersey Department of Environmental Protection
- NRDC - Non-Residential Direct Contact
- Q - Qualifier
- RDC - Residential Direct Contact
- RL - Reporting Limit
- SRS - Soil Remediation Standard
- U - Indicates compound analyzed for but not detected
Concrete Sampling Results Table

Design Services for the Demolition of Linden Hall
Rowan University, Glassboro, New Jersey 08028
Langan Project No.: 130108801

Polyaromatated Biphenyls

<table>
<thead>
<tr>
<th>Location</th>
<th>NJDEP SRS</th>
<th>Concrete Walk-2</th>
<th>Concrete Walk-3</th>
<th>Interior Slab-1</th>
<th>Interior Slab-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Walk-2</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Concrete Walk-3</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Interior Slab-1</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Interior Slab-2</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Polycyclic Aromatic Hydrocarbons

<table>
<thead>
<tr>
<th>Substance</th>
<th>NJDEP SRS</th>
<th>Concrete Walk-2</th>
<th>Concrete Walk-3</th>
<th>Interior Slab-1</th>
<th>Interior Slab-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenanthrene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dibenzothiophene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pyrene</td>
<td>0.2 mg/kg</td>
<td>U</td>
<td>U</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Qualifiers:
- **D** - Indicates result is based on a dilution
- **IGWSSL** - Impact to Groundwater Soil Screenin Level
- **J** - Indicates an estimated value when detected below the RL
- **MDL** - Method Detection Limit
- **ND** - Non Detect
- **NJDEP** - New Jersey Department of Environmental Protection
- **NRDC** - Non-Residential Direct Contact
- **Q** - Qualifier
- **RDC** - Residential Direct Contact
- **RL** - Reporting Limit
- **SRS** - Soil Remediation Standard
- **U** - Indicates compound analyzed for but not detected

\langan.com/data/LAW/data8/130108801/Office Data/Reports/Environmental/Field Notes/2017 06 05 Concrete Sampling/Concrete Sampling Results Table
<table>
<thead>
<tr>
<th>POLYCHLORINATED BIPHENYLS</th>
<th>LOCATION</th>
<th>NJDEP SRS</th>
<th>INTERIOR WALL-1</th>
<th>INTERIOR WALL-2</th>
<th>INTERIOR WALL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Aroclor-1266</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Total PCBs</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>ND</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLYCYCLIC AROMATIC HYDROCARBONS</th>
<th>LOCATION</th>
<th>NJDEP SRS</th>
<th>INTERIOR WALL-1</th>
<th>INTERIOR WALL-2</th>
<th>INTERIOR WALL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>3400</td>
<td>37000</td>
<td>110</td>
<td>ND</td>
<td>0.0866</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>NA</td>
<td>300000</td>
<td>NS</td>
<td>ND</td>
<td>0.0967</td>
</tr>
<tr>
<td>Anthracene</td>
<td>17000</td>
<td>30000</td>
<td>2400</td>
<td>ND</td>
<td>0.0909</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>0.6</td>
<td>2</td>
<td>0.8</td>
<td>ND</td>
<td>0.0758</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>ND</td>
<td>0.0591</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>0.6</td>
<td>2</td>
<td>2</td>
<td>ND</td>
<td>0.114</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>380000</td>
<td>30000</td>
<td>25</td>
<td>ND</td>
<td>0.135</td>
</tr>
<tr>
<td>Chrysene</td>
<td>62</td>
<td>230</td>
<td>80</td>
<td>ND</td>
<td>0.119</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
<td>ND</td>
<td>0.0118</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>2300</td>
<td>24000</td>
<td>1300</td>
<td>ND</td>
<td>0.0923</td>
</tr>
<tr>
<td>Fluorene</td>
<td>2300</td>
<td>24000</td>
<td>170</td>
<td>ND</td>
<td>0.106</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>0.6</td>
<td>2</td>
<td>7</td>
<td>ND</td>
<td>0.0138</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>NA</td>
<td>300000</td>
<td>0.304</td>
<td>JD</td>
<td>0.0886</td>
</tr>
<tr>
<td>Phenylenone</td>
<td>1700</td>
<td>18000</td>
<td>840</td>
<td>ND</td>
<td>0.0849</td>
</tr>
</tbody>
</table>

Qualifiers:
- **D** - Indicates result is based on a dilution
- **J** - Indicates an estimated value when detected below the RL
- **MDL** - Method Detection Limit
- **ND** - Non Detect
- **NJDEP** - New Jersey Department of Environmental Protection
- **NRDC** - Non-Residential Direct Contact
- **Q** - Qualifier
- **RDC** - Residential Direct Contact
- **RL** - Reporting Limit
- **SRS** - Soil Remediation Standard
- **U** - Indicates compound analyzed for but not detected